Lixia Xi, Qiuyang Lu, Dongdong Gu, Shaoting Cao, Han Zhang, Ivan Kaban, Baran Sarac, Konda Gokuldoss Prashanth, Jürgen Eckert
{"title":"激光粉末床熔融Al–Cu合金的规避凝固裂纹敏感性","authors":"Lixia Xi, Qiuyang Lu, Dongdong Gu, Shaoting Cao, Han Zhang, Ivan Kaban, Baran Sarac, Konda Gokuldoss Prashanth, Jürgen Eckert","doi":"10.1089/3dp.2022.0207","DOIUrl":null,"url":null,"abstract":"<p><p>Laser powder bed fusion (LPBF) of Al-Cu alloys shows high susceptibility to cracking due to a wide solidification temperature range. In this work, 2024 alloys were manufactured by LPBF at different laser processing parameters. The effect of processing parameters on the densification behavior and mechanical properties of the LPBF-processed 2024 alloys was investigated. The results show that the porosity increases significantly with increasing laser power, while the number of cracks and lack-of-fusion defects increase distinctly with increasing scan speed. The solidification cracking susceptibility of the LPBF-processed 2024 alloys prepared at different processing parameters was analyzed based on a finite element model, which was accurately predicted by theoretical calculations. Dense and crack-free 2024 samples with a high densification of over 98.1% were manufactured at a low laser power of 200 W combined with a low laser scan speed of 100 mm/s. The LPBF-processed 2024 alloys show a high hardness of 110 ± 4 HV<sub>0.2</sub>, an ultimate tensile strength of 300 ± 15 MPa, and an elongation of ∼3%. This work can serve as reference for obtaining crack-free and high-performance Al-Cu alloys by LPBF.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11057541/pdf/","citationCount":"0","resultStr":"{\"title\":\"Circumventing Solidification Cracking Susceptibility in Al-Cu Alloys Prepared by Laser Powder Bed Fusion.\",\"authors\":\"Lixia Xi, Qiuyang Lu, Dongdong Gu, Shaoting Cao, Han Zhang, Ivan Kaban, Baran Sarac, Konda Gokuldoss Prashanth, Jürgen Eckert\",\"doi\":\"10.1089/3dp.2022.0207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Laser powder bed fusion (LPBF) of Al-Cu alloys shows high susceptibility to cracking due to a wide solidification temperature range. In this work, 2024 alloys were manufactured by LPBF at different laser processing parameters. The effect of processing parameters on the densification behavior and mechanical properties of the LPBF-processed 2024 alloys was investigated. The results show that the porosity increases significantly with increasing laser power, while the number of cracks and lack-of-fusion defects increase distinctly with increasing scan speed. The solidification cracking susceptibility of the LPBF-processed 2024 alloys prepared at different processing parameters was analyzed based on a finite element model, which was accurately predicted by theoretical calculations. Dense and crack-free 2024 samples with a high densification of over 98.1% were manufactured at a low laser power of 200 W combined with a low laser scan speed of 100 mm/s. The LPBF-processed 2024 alloys show a high hardness of 110 ± 4 HV<sub>0.2</sub>, an ultimate tensile strength of 300 ± 15 MPa, and an elongation of ∼3%. This work can serve as reference for obtaining crack-free and high-performance Al-Cu alloys by LPBF.</p>\",\"PeriodicalId\":54341,\"journal\":{\"name\":\"3D Printing and Additive Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11057541/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3D Printing and Additive Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1089/3dp.2022.0207\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2022.0207","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Circumventing Solidification Cracking Susceptibility in Al-Cu Alloys Prepared by Laser Powder Bed Fusion.
Laser powder bed fusion (LPBF) of Al-Cu alloys shows high susceptibility to cracking due to a wide solidification temperature range. In this work, 2024 alloys were manufactured by LPBF at different laser processing parameters. The effect of processing parameters on the densification behavior and mechanical properties of the LPBF-processed 2024 alloys was investigated. The results show that the porosity increases significantly with increasing laser power, while the number of cracks and lack-of-fusion defects increase distinctly with increasing scan speed. The solidification cracking susceptibility of the LPBF-processed 2024 alloys prepared at different processing parameters was analyzed based on a finite element model, which was accurately predicted by theoretical calculations. Dense and crack-free 2024 samples with a high densification of over 98.1% were manufactured at a low laser power of 200 W combined with a low laser scan speed of 100 mm/s. The LPBF-processed 2024 alloys show a high hardness of 110 ± 4 HV0.2, an ultimate tensile strength of 300 ± 15 MPa, and an elongation of ∼3%. This work can serve as reference for obtaining crack-free and high-performance Al-Cu alloys by LPBF.
期刊介绍:
3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged.
The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.