美国国家表型网络的观测结果可以用来模拟空气中的花粉

IF 2.2 3区 环境科学与生态学 Q2 BIOLOGY
Daniel S. W. Katz, Elizabeth Vogt, Arie Manangan, Claudia L. Brown, Dan Dalan, Kai Zhu, Yiluan Song, Theresa M. Crimmins
{"title":"美国国家表型网络的观测结果可以用来模拟空气中的花粉","authors":"Daniel S. W. Katz,&nbsp;Elizabeth Vogt,&nbsp;Arie Manangan,&nbsp;Claudia L. Brown,&nbsp;Dan Dalan,&nbsp;Kai Zhu,&nbsp;Yiluan Song,&nbsp;Theresa M. Crimmins","doi":"10.1007/s10453-022-09774-3","DOIUrl":null,"url":null,"abstract":"<div><p>The USA National Phenology Network (USA-NPN) hosts the largest volunteer-contributed collection of plant phenology observations in the USA. The potential contributions of these spatially and temporally explicit observations of flowers and pollen cones to the field of aerobiology remain largely unexplored. Here, we introduce this freely available dataset and demonstrate its prospective applications for modeling airborne pollen in a case study. Specifically, we compare the timing of 4265 observations of flowering for oak (<i>Quercus</i>) trees in the eastern USA to winter–spring temperatures. We then use this relationship to predict the day of peak flowering at 15 pollen monitoring stations in 15 years and compare the predicted day of peak flowering to the peak day of measured pollen (<i>n</i> = 111 station-years). There was a strong association between winter–spring temperature and the presence of open flowers (<i>r</i><sup>2</sup> = 0.66, <i>p</i> &lt; 0.0001) and the predicted peak flowering was strongly correlated with peak airborne pollen concentrations (<i>r</i><sup>2</sup> = 0.81, <i>p</i> &lt; 0.0001). These results demonstrate the potential for the USA-NPN’s phenological observations to underpin source-based models of airborne pollen. We also highlight opportunities for leveraging and enhancing this near real-time dataset for aerobiological applications.\n</p></div>","PeriodicalId":7718,"journal":{"name":"Aerobiologia","volume":"39 1","pages":"169 - 174"},"PeriodicalIF":2.2000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observations from the USA National Phenology Network can be leveraged to model airborne pollen\",\"authors\":\"Daniel S. W. Katz,&nbsp;Elizabeth Vogt,&nbsp;Arie Manangan,&nbsp;Claudia L. Brown,&nbsp;Dan Dalan,&nbsp;Kai Zhu,&nbsp;Yiluan Song,&nbsp;Theresa M. Crimmins\",\"doi\":\"10.1007/s10453-022-09774-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The USA National Phenology Network (USA-NPN) hosts the largest volunteer-contributed collection of plant phenology observations in the USA. The potential contributions of these spatially and temporally explicit observations of flowers and pollen cones to the field of aerobiology remain largely unexplored. Here, we introduce this freely available dataset and demonstrate its prospective applications for modeling airborne pollen in a case study. Specifically, we compare the timing of 4265 observations of flowering for oak (<i>Quercus</i>) trees in the eastern USA to winter–spring temperatures. We then use this relationship to predict the day of peak flowering at 15 pollen monitoring stations in 15 years and compare the predicted day of peak flowering to the peak day of measured pollen (<i>n</i> = 111 station-years). There was a strong association between winter–spring temperature and the presence of open flowers (<i>r</i><sup>2</sup> = 0.66, <i>p</i> &lt; 0.0001) and the predicted peak flowering was strongly correlated with peak airborne pollen concentrations (<i>r</i><sup>2</sup> = 0.81, <i>p</i> &lt; 0.0001). These results demonstrate the potential for the USA-NPN’s phenological observations to underpin source-based models of airborne pollen. We also highlight opportunities for leveraging and enhancing this near real-time dataset for aerobiological applications.\\n</p></div>\",\"PeriodicalId\":7718,\"journal\":{\"name\":\"Aerobiologia\",\"volume\":\"39 1\",\"pages\":\"169 - 174\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerobiologia\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10453-022-09774-3\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerobiologia","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10453-022-09774-3","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

美国国家表型网络(USA-NPN)收集了美国最大的由志愿者贡献的植物表型观测数据。这些对花和花粉锥的空间和时间明确观测对空气生物学领域的潜在贡献在很大程度上仍未被探索。在这里,我们介绍了这个免费提供的数据集,并在一个案例研究中展示了它在空气中花粉建模中的潜在应用。具体而言,我们将美国东部4265棵橡树开花的观测时间与冬春温度进行了比较。然后,我们使用这种关系来预测15年内15个花粉监测站的开花高峰期,并将预测的开花高峰期与测得的花粉(n = 111站年)。冬春温度与开放花朵的存在之间存在强烈的相关性(r2 = 0.66,p <; 0.0001),并且预测的开花峰值与空气中花粉浓度峰值强相关(r2 = 0.81,p <; 0.0001)。这些结果证明了USA-NPN的酚学观测有可能支持基于来源的空气传播花粉模型。我们还强调了利用和增强这一近实时数据集用于航空生物学应用的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Observations from the USA National Phenology Network can be leveraged to model airborne pollen

Observations from the USA National Phenology Network can be leveraged to model airborne pollen

The USA National Phenology Network (USA-NPN) hosts the largest volunteer-contributed collection of plant phenology observations in the USA. The potential contributions of these spatially and temporally explicit observations of flowers and pollen cones to the field of aerobiology remain largely unexplored. Here, we introduce this freely available dataset and demonstrate its prospective applications for modeling airborne pollen in a case study. Specifically, we compare the timing of 4265 observations of flowering for oak (Quercus) trees in the eastern USA to winter–spring temperatures. We then use this relationship to predict the day of peak flowering at 15 pollen monitoring stations in 15 years and compare the predicted day of peak flowering to the peak day of measured pollen (n = 111 station-years). There was a strong association between winter–spring temperature and the presence of open flowers (r2 = 0.66, p < 0.0001) and the predicted peak flowering was strongly correlated with peak airborne pollen concentrations (r2 = 0.81, p < 0.0001). These results demonstrate the potential for the USA-NPN’s phenological observations to underpin source-based models of airborne pollen. We also highlight opportunities for leveraging and enhancing this near real-time dataset for aerobiological applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aerobiologia
Aerobiologia 环境科学-环境科学
CiteScore
4.50
自引率
15.00%
发文量
37
审稿时长
18-36 weeks
期刊介绍: Associated with the International Association for Aerobiology, Aerobiologia is an international medium for original research and review articles in the interdisciplinary fields of aerobiology and interaction of human, plant and animal systems on the biosphere. Coverage includes bioaerosols, transport mechanisms, biometeorology, climatology, air-sea interaction, land-surface/atmosphere interaction, biological pollution, biological input to global change, microbiology, aeromycology, aeropalynology, arthropod dispersal and environmental policy. Emphasis is placed on respiratory allergology, plant pathology, pest management, biological weathering and biodeterioration, indoor air quality, air-conditioning technology, industrial aerobiology and more. Aerobiologia serves aerobiologists, and other professionals in medicine, public health, industrial and environmental hygiene, biological sciences, agriculture, atmospheric physics, botany, environmental science and cultural heritage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信