bourling广义整数的最优malliavin型余数

IF 1.1 2区 数学 Q1 MATHEMATICS
Frederik Broucke, Gregory Debruyne, J. Vindas
{"title":"bourling广义整数的最优malliavin型余数","authors":"Frederik Broucke, Gregory Debruyne, J. Vindas","doi":"10.1017/s147474802200038x","DOIUrl":null,"url":null,"abstract":"\n\t <jats:p>We establish the optimal order of Malliavin-type remainders in the asymptotic density approximation formula for Beurling generalized integers. Given <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S147474802200038X_inline1.png\" />\n\t\t<jats:tex-math>\n$\\alpha \\in (0,1]$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> and <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S147474802200038X_inline2.png\" />\n\t\t<jats:tex-math>\n$c>0$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> (with <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S147474802200038X_inline3.png\" />\n\t\t<jats:tex-math>\n$c\\leq 1$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> if <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S147474802200038X_inline4.png\" />\n\t\t<jats:tex-math>\n$\\alpha =1$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>), a generalized number system is constructed with Riemann prime counting function <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S147474802200038X_inline5.png\" />\n\t\t<jats:tex-math>\n$ \\Pi (x)= \\operatorname {\\mathrm {Li}}(x)+ O(x\\exp (-c \\log ^{\\alpha } x ) +\\log _{2}x), $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> and whose integer counting function satisfies the extremal oscillation estimate <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S147474802200038X_inline6.png\" />\n\t\t<jats:tex-math>\n$N(x)=\\rho x + \\Omega _{\\pm }(x\\exp (- c'(\\log x\\log _{2} x)^{\\frac {\\alpha }{\\alpha +1}})$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> for any <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S147474802200038X_inline7.png\" />\n\t\t<jats:tex-math>\n$c'>(c(\\alpha +1))^{\\frac {1}{\\alpha +1}}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>, where <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S147474802200038X_inline8.png\" />\n\t\t<jats:tex-math>\n$\\rho>0$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> is its asymptotic density. In particular, this improves and extends upon the earlier work [Adv. Math. 370 (2020), Article 107240].</jats:p>","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"THE OPTIMAL MALLIAVIN-TYPE REMAINDER FOR BEURLING GENERALIZED INTEGERS\",\"authors\":\"Frederik Broucke, Gregory Debruyne, J. Vindas\",\"doi\":\"10.1017/s147474802200038x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\t <jats:p>We establish the optimal order of Malliavin-type remainders in the asymptotic density approximation formula for Beurling generalized integers. Given <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S147474802200038X_inline1.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\alpha \\\\in (0,1]$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> and <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S147474802200038X_inline2.png\\\" />\\n\\t\\t<jats:tex-math>\\n$c>0$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> (with <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S147474802200038X_inline3.png\\\" />\\n\\t\\t<jats:tex-math>\\n$c\\\\leq 1$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> if <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S147474802200038X_inline4.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\alpha =1$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>), a generalized number system is constructed with Riemann prime counting function <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S147474802200038X_inline5.png\\\" />\\n\\t\\t<jats:tex-math>\\n$ \\\\Pi (x)= \\\\operatorname {\\\\mathrm {Li}}(x)+ O(x\\\\exp (-c \\\\log ^{\\\\alpha } x ) +\\\\log _{2}x), $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> and whose integer counting function satisfies the extremal oscillation estimate <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S147474802200038X_inline6.png\\\" />\\n\\t\\t<jats:tex-math>\\n$N(x)=\\\\rho x + \\\\Omega _{\\\\pm }(x\\\\exp (- c'(\\\\log x\\\\log _{2} x)^{\\\\frac {\\\\alpha }{\\\\alpha +1}})$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> for any <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S147474802200038X_inline7.png\\\" />\\n\\t\\t<jats:tex-math>\\n$c'>(c(\\\\alpha +1))^{\\\\frac {1}{\\\\alpha +1}}$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>, where <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S147474802200038X_inline8.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\rho>0$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> is its asymptotic density. In particular, this improves and extends upon the earlier work [Adv. Math. 370 (2020), Article 107240].</jats:p>\",\"PeriodicalId\":50002,\"journal\":{\"name\":\"Journal of the Institute of Mathematics of Jussieu\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Institute of Mathematics of Jussieu\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s147474802200038x\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Institute of Mathematics of Jussieu","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s147474802200038x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

在Beurling广义整数的渐近密度近似公式中,我们建立了Malliavin型余数的最优阶。给定$\alpha\in(0,1]$和$c>0$(如果$\alpha=1$,则$c\leq为1$),用黎曼素数计数函数$\Pi(x)=\operatorname{\mathrm{Li}}(x)+O(x\exp(-c\log^{\alpha}x)+\log构造了一个广义数系_{2}x),$,并且其整数计数函数满足任何$c'>(c(\alpha+1))^{\frac{1}{\alpha+1}}$的极值振荡估计$N(x)=\rho x+\Omega_{\pm}(x\exp(-c'(\logx\log_{2}x)^{\frac{\aalpha+1})$,其中$\rho>0$是其渐近密度。特别是,这改进并扩展了早期的工作[Adv.Math.370(2020),文章107240]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
THE OPTIMAL MALLIAVIN-TYPE REMAINDER FOR BEURLING GENERALIZED INTEGERS
We establish the optimal order of Malliavin-type remainders in the asymptotic density approximation formula for Beurling generalized integers. Given $\alpha \in (0,1]$ and $c>0$ (with $c\leq 1$ if $\alpha =1$ ), a generalized number system is constructed with Riemann prime counting function $ \Pi (x)= \operatorname {\mathrm {Li}}(x)+ O(x\exp (-c \log ^{\alpha } x ) +\log _{2}x), $ and whose integer counting function satisfies the extremal oscillation estimate $N(x)=\rho x + \Omega _{\pm }(x\exp (- c'(\log x\log _{2} x)^{\frac {\alpha }{\alpha +1}})$ for any $c'>(c(\alpha +1))^{\frac {1}{\alpha +1}}$ , where $\rho>0$ is its asymptotic density. In particular, this improves and extends upon the earlier work [Adv. Math. 370 (2020), Article 107240].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
54
审稿时长
>12 weeks
期刊介绍: The Journal of the Institute of Mathematics of Jussieu publishes original research papers in any branch of pure mathematics; papers in logic and applied mathematics will also be considered, particularly when they have direct connections with pure mathematics. Its policy is to feature a wide variety of research areas and it welcomes the submission of papers from all parts of the world. Selection for publication is on the basis of reports from specialist referees commissioned by the Editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信