{"title":"bourling广义整数的最优malliavin型余数","authors":"Frederik Broucke, Gregory Debruyne, J. Vindas","doi":"10.1017/s147474802200038x","DOIUrl":null,"url":null,"abstract":"\n\t <jats:p>We establish the optimal order of Malliavin-type remainders in the asymptotic density approximation formula for Beurling generalized integers. Given <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S147474802200038X_inline1.png\" />\n\t\t<jats:tex-math>\n$\\alpha \\in (0,1]$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> and <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S147474802200038X_inline2.png\" />\n\t\t<jats:tex-math>\n$c>0$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> (with <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S147474802200038X_inline3.png\" />\n\t\t<jats:tex-math>\n$c\\leq 1$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> if <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S147474802200038X_inline4.png\" />\n\t\t<jats:tex-math>\n$\\alpha =1$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>), a generalized number system is constructed with Riemann prime counting function <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S147474802200038X_inline5.png\" />\n\t\t<jats:tex-math>\n$ \\Pi (x)= \\operatorname {\\mathrm {Li}}(x)+ O(x\\exp (-c \\log ^{\\alpha } x ) +\\log _{2}x), $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> and whose integer counting function satisfies the extremal oscillation estimate <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S147474802200038X_inline6.png\" />\n\t\t<jats:tex-math>\n$N(x)=\\rho x + \\Omega _{\\pm }(x\\exp (- c'(\\log x\\log _{2} x)^{\\frac {\\alpha }{\\alpha +1}})$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> for any <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S147474802200038X_inline7.png\" />\n\t\t<jats:tex-math>\n$c'>(c(\\alpha +1))^{\\frac {1}{\\alpha +1}}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>, where <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S147474802200038X_inline8.png\" />\n\t\t<jats:tex-math>\n$\\rho>0$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> is its asymptotic density. In particular, this improves and extends upon the earlier work [Adv. Math. 370 (2020), Article 107240].</jats:p>","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"THE OPTIMAL MALLIAVIN-TYPE REMAINDER FOR BEURLING GENERALIZED INTEGERS\",\"authors\":\"Frederik Broucke, Gregory Debruyne, J. Vindas\",\"doi\":\"10.1017/s147474802200038x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\t <jats:p>We establish the optimal order of Malliavin-type remainders in the asymptotic density approximation formula for Beurling generalized integers. Given <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S147474802200038X_inline1.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\alpha \\\\in (0,1]$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> and <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S147474802200038X_inline2.png\\\" />\\n\\t\\t<jats:tex-math>\\n$c>0$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> (with <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S147474802200038X_inline3.png\\\" />\\n\\t\\t<jats:tex-math>\\n$c\\\\leq 1$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> if <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S147474802200038X_inline4.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\alpha =1$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>), a generalized number system is constructed with Riemann prime counting function <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S147474802200038X_inline5.png\\\" />\\n\\t\\t<jats:tex-math>\\n$ \\\\Pi (x)= \\\\operatorname {\\\\mathrm {Li}}(x)+ O(x\\\\exp (-c \\\\log ^{\\\\alpha } x ) +\\\\log _{2}x), $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> and whose integer counting function satisfies the extremal oscillation estimate <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S147474802200038X_inline6.png\\\" />\\n\\t\\t<jats:tex-math>\\n$N(x)=\\\\rho x + \\\\Omega _{\\\\pm }(x\\\\exp (- c'(\\\\log x\\\\log _{2} x)^{\\\\frac {\\\\alpha }{\\\\alpha +1}})$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> for any <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S147474802200038X_inline7.png\\\" />\\n\\t\\t<jats:tex-math>\\n$c'>(c(\\\\alpha +1))^{\\\\frac {1}{\\\\alpha +1}}$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>, where <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S147474802200038X_inline8.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\rho>0$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> is its asymptotic density. In particular, this improves and extends upon the earlier work [Adv. Math. 370 (2020), Article 107240].</jats:p>\",\"PeriodicalId\":50002,\"journal\":{\"name\":\"Journal of the Institute of Mathematics of Jussieu\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Institute of Mathematics of Jussieu\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s147474802200038x\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Institute of Mathematics of Jussieu","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s147474802200038x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
THE OPTIMAL MALLIAVIN-TYPE REMAINDER FOR BEURLING GENERALIZED INTEGERS
We establish the optimal order of Malliavin-type remainders in the asymptotic density approximation formula for Beurling generalized integers. Given
$\alpha \in (0,1]$
and
$c>0$
(with
$c\leq 1$
if
$\alpha =1$
), a generalized number system is constructed with Riemann prime counting function
$ \Pi (x)= \operatorname {\mathrm {Li}}(x)+ O(x\exp (-c \log ^{\alpha } x ) +\log _{2}x), $
and whose integer counting function satisfies the extremal oscillation estimate
$N(x)=\rho x + \Omega _{\pm }(x\exp (- c'(\log x\log _{2} x)^{\frac {\alpha }{\alpha +1}})$
for any
$c'>(c(\alpha +1))^{\frac {1}{\alpha +1}}$
, where
$\rho>0$
is its asymptotic density. In particular, this improves and extends upon the earlier work [Adv. Math. 370 (2020), Article 107240].
期刊介绍:
The Journal of the Institute of Mathematics of Jussieu publishes original research papers in any branch of pure mathematics; papers in logic and applied mathematics will also be considered, particularly when they have direct connections with pure mathematics. Its policy is to feature a wide variety of research areas and it welcomes the submission of papers from all parts of the world. Selection for publication is on the basis of reports from specialist referees commissioned by the Editors.