Theodore P. Klupinski, R. Moyer, Po-Hsu Allen Chen, E. Strozier, Stephanie Buehler, D. Friedenberg, Bartosz Koszowski
{"title":"检测和识别气溶胶中潜在吸入毒性的特定化学物质的程序","authors":"Theodore P. Klupinski, R. Moyer, Po-Hsu Allen Chen, E. Strozier, Stephanie Buehler, D. Friedenberg, Bartosz Koszowski","doi":"10.1080/08958378.2022.2051646","DOIUrl":null,"url":null,"abstract":"Abstract Objective Understanding the potential inhalation toxicity of poorly characterized aerosols is challenging both because aerosols may contain numerous chemicals and because it is difficult to predict which chemicals may present significant inhalation toxicity concerns at the observed levels. We have developed a novel systematic procedure to address these challenges through non-targeted chemical analysis by two-dimensional gas chromatography–time-of-flight mass spectrometry (GC × GC-TOFMS) and assessment of the results using publicly available toxicity data to prioritize the tentatively identified detected chemicals according to potential inhalation toxicity. Materials and Methods The procedure involves non-targeted chemical analysis of aerosol samples utilizing GC × GC-TOFMS, which is selected because it is an effective technique for detecting chemicals in complex samples and assigning tentative identities according to the mass spectra. For data evaluation, existing toxicity data (e.g. from the U.S. Environmental Protection Agency CompTox Chemicals Dashboard) are used to calculate multiple toxicity metrics that can be compared among the tentatively identified chemicals. These metrics include hazard quotient, incremental lifetime cancer risk, and metrics analogous to hazard quotient that we designated as exposure–(toxicology endpoint) ratios. Results and Discussion We demonstrated the utility of our procedure by detecting, identifying, and prioritizing specific chemicals of potential inhalation toxicity concern in the mainstream smoke generated from the machine-smoking of marijuana blunts. Conclusion By designing a systematic approach for detecting and identifying numerous chemicals in complex aerosol samples and prioritizing the chemicals in relation to different inhalation toxicology endpoints, we have developed an effective approach to elucidate the potential inhalation toxicity of aerosols.","PeriodicalId":13561,"journal":{"name":"Inhalation Toxicology","volume":"34 1","pages":"120 - 134"},"PeriodicalIF":2.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A procedure to detect and identify specific chemicals of potential inhalation toxicity concern in aerosols\",\"authors\":\"Theodore P. Klupinski, R. Moyer, Po-Hsu Allen Chen, E. Strozier, Stephanie Buehler, D. Friedenberg, Bartosz Koszowski\",\"doi\":\"10.1080/08958378.2022.2051646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Objective Understanding the potential inhalation toxicity of poorly characterized aerosols is challenging both because aerosols may contain numerous chemicals and because it is difficult to predict which chemicals may present significant inhalation toxicity concerns at the observed levels. We have developed a novel systematic procedure to address these challenges through non-targeted chemical analysis by two-dimensional gas chromatography–time-of-flight mass spectrometry (GC × GC-TOFMS) and assessment of the results using publicly available toxicity data to prioritize the tentatively identified detected chemicals according to potential inhalation toxicity. Materials and Methods The procedure involves non-targeted chemical analysis of aerosol samples utilizing GC × GC-TOFMS, which is selected because it is an effective technique for detecting chemicals in complex samples and assigning tentative identities according to the mass spectra. For data evaluation, existing toxicity data (e.g. from the U.S. Environmental Protection Agency CompTox Chemicals Dashboard) are used to calculate multiple toxicity metrics that can be compared among the tentatively identified chemicals. These metrics include hazard quotient, incremental lifetime cancer risk, and metrics analogous to hazard quotient that we designated as exposure–(toxicology endpoint) ratios. Results and Discussion We demonstrated the utility of our procedure by detecting, identifying, and prioritizing specific chemicals of potential inhalation toxicity concern in the mainstream smoke generated from the machine-smoking of marijuana blunts. Conclusion By designing a systematic approach for detecting and identifying numerous chemicals in complex aerosol samples and prioritizing the chemicals in relation to different inhalation toxicology endpoints, we have developed an effective approach to elucidate the potential inhalation toxicity of aerosols.\",\"PeriodicalId\":13561,\"journal\":{\"name\":\"Inhalation Toxicology\",\"volume\":\"34 1\",\"pages\":\"120 - 134\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inhalation Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/08958378.2022.2051646\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inhalation Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08958378.2022.2051646","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TOXICOLOGY","Score":null,"Total":0}
A procedure to detect and identify specific chemicals of potential inhalation toxicity concern in aerosols
Abstract Objective Understanding the potential inhalation toxicity of poorly characterized aerosols is challenging both because aerosols may contain numerous chemicals and because it is difficult to predict which chemicals may present significant inhalation toxicity concerns at the observed levels. We have developed a novel systematic procedure to address these challenges through non-targeted chemical analysis by two-dimensional gas chromatography–time-of-flight mass spectrometry (GC × GC-TOFMS) and assessment of the results using publicly available toxicity data to prioritize the tentatively identified detected chemicals according to potential inhalation toxicity. Materials and Methods The procedure involves non-targeted chemical analysis of aerosol samples utilizing GC × GC-TOFMS, which is selected because it is an effective technique for detecting chemicals in complex samples and assigning tentative identities according to the mass spectra. For data evaluation, existing toxicity data (e.g. from the U.S. Environmental Protection Agency CompTox Chemicals Dashboard) are used to calculate multiple toxicity metrics that can be compared among the tentatively identified chemicals. These metrics include hazard quotient, incremental lifetime cancer risk, and metrics analogous to hazard quotient that we designated as exposure–(toxicology endpoint) ratios. Results and Discussion We demonstrated the utility of our procedure by detecting, identifying, and prioritizing specific chemicals of potential inhalation toxicity concern in the mainstream smoke generated from the machine-smoking of marijuana blunts. Conclusion By designing a systematic approach for detecting and identifying numerous chemicals in complex aerosol samples and prioritizing the chemicals in relation to different inhalation toxicology endpoints, we have developed an effective approach to elucidate the potential inhalation toxicity of aerosols.
期刊介绍:
Inhalation Toxicology is a peer-reviewed publication providing a key forum for the latest accomplishments and advancements in concepts, approaches, and procedures presently being used to evaluate the health risk associated with airborne chemicals.
The journal publishes original research, reviews, symposia, and workshop topics involving the respiratory system’s functions in health and disease, the pathogenesis and mechanism of injury, the extrapolation of animal data to humans, the effects of inhaled substances on extra-pulmonary systems, as well as reliable and innovative models for predicting human disease.