藜麦:谷物和叶片的营养成分和生物活性化合物,以及热处理和发芽的影响

IF 1 Q3 AGRICULTURE, DAIRY & ANIMAL SCIENCE
Jordy Campos-Rodriguez, Katherine Acosta-Coral, L. Paucar-Menacho
{"title":"藜麦:谷物和叶片的营养成分和生物活性化合物,以及热处理和发芽的影响","authors":"Jordy Campos-Rodriguez, Katherine Acosta-Coral, L. Paucar-Menacho","doi":"10.17268/sci.agropecu.2022.019","DOIUrl":null,"url":null,"abstract":"Quinoa (Chenopodium quinoa) is an Andean pseudocereal produced in countries such as Bolivia, Peru, Ecuador and southern Colombia, with more than 3,000 varieties, distinguished by their nutritional properties and adaptation to different agro-ecological zones. Quinoa's nutritional profile stands out for its protein, carbohydrate, lipid and gluten-free content; it is rich in vitamins; and it is an excellent source of minerals, such as calcium, magnesium, iron and phosphorus. It is one of the few foods that have in its composition all the essential amino acids, standing out from other cereals such as rice or wheat. It is an excellent source of bioactive compounds, which have antioxidant, cytotoxic, antidiabetic and anti-inflammatory properties. With respect to quinoa leaves, several studies have indicated that they have higher protein content than grains, as well as inorganic nutrients such as calcium, phosphorus, iron and zinc. In addition, they can potentially serve as a rich source of phenolic compounds and carotenoids. Conventional heat treatments greatly or slightly affect the composition of the food, including bioactive compounds and antioxidant capacity. Germination provides the product with greater bioavailability and an increase in bioactive compounds. The purpose of this work was to document research on quinoa and its leaves, the effect of thermal treatments and germination on its bioactive compounds, in order to promote the creation and innovation of products based on its bioactive compounds, thus combating malnutrition in our population.","PeriodicalId":21642,"journal":{"name":"Scientia Agropecuaria","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Quinoa (Chenopodium quinoa): Nutritional composition and bioactive compounds of grain and leaf, and impact of heat treatment and germination\",\"authors\":\"Jordy Campos-Rodriguez, Katherine Acosta-Coral, L. Paucar-Menacho\",\"doi\":\"10.17268/sci.agropecu.2022.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quinoa (Chenopodium quinoa) is an Andean pseudocereal produced in countries such as Bolivia, Peru, Ecuador and southern Colombia, with more than 3,000 varieties, distinguished by their nutritional properties and adaptation to different agro-ecological zones. Quinoa's nutritional profile stands out for its protein, carbohydrate, lipid and gluten-free content; it is rich in vitamins; and it is an excellent source of minerals, such as calcium, magnesium, iron and phosphorus. It is one of the few foods that have in its composition all the essential amino acids, standing out from other cereals such as rice or wheat. It is an excellent source of bioactive compounds, which have antioxidant, cytotoxic, antidiabetic and anti-inflammatory properties. With respect to quinoa leaves, several studies have indicated that they have higher protein content than grains, as well as inorganic nutrients such as calcium, phosphorus, iron and zinc. In addition, they can potentially serve as a rich source of phenolic compounds and carotenoids. Conventional heat treatments greatly or slightly affect the composition of the food, including bioactive compounds and antioxidant capacity. Germination provides the product with greater bioavailability and an increase in bioactive compounds. The purpose of this work was to document research on quinoa and its leaves, the effect of thermal treatments and germination on its bioactive compounds, in order to promote the creation and innovation of products based on its bioactive compounds, thus combating malnutrition in our population.\",\"PeriodicalId\":21642,\"journal\":{\"name\":\"Scientia Agropecuaria\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientia Agropecuaria\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17268/sci.agropecu.2022.019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Agropecuaria","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17268/sci.agropecu.2022.019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 2

摘要

藜麦(藜麦)是一种产于玻利维亚、秘鲁、厄瓜多尔和哥伦比亚南部等国的安第斯伪藜,有3000多个品种,以其营养特性和对不同农业生态区的适应能力而闻名。藜麦的营养成分以其蛋白质、碳水化合物、脂质和无麸质含量而闻名;它富含维生素;它是钙、镁、铁和磷等矿物质的绝佳来源。它是为数不多的含有所有必需氨基酸的食物之一,与大米或小麦等其他谷物不同。它是生物活性化合物的极好来源,具有抗氧化、细胞毒性、抗糖尿病和抗炎特性。关于藜麦叶,几项研究表明,藜麦叶的蛋白质含量高于谷物,还含有钙、磷、铁和锌等无机营养素。此外,它们还可能成为酚类化合物和类胡萝卜素的丰富来源。传统的热处理会大大或轻微地影响食物的成分,包括生物活性化合物和抗氧化能力。发芽为该产品提供了更大的生物利用度和生物活性化合物的增加。这项工作的目的是记录对藜麦及其叶子的研究,热处理和发芽对其生物活性化合物的影响,以促进基于其生物活性成分的产品的创造和创新,从而对抗我们人口中的营养不良。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quinoa (Chenopodium quinoa): Nutritional composition and bioactive compounds of grain and leaf, and impact of heat treatment and germination
Quinoa (Chenopodium quinoa) is an Andean pseudocereal produced in countries such as Bolivia, Peru, Ecuador and southern Colombia, with more than 3,000 varieties, distinguished by their nutritional properties and adaptation to different agro-ecological zones. Quinoa's nutritional profile stands out for its protein, carbohydrate, lipid and gluten-free content; it is rich in vitamins; and it is an excellent source of minerals, such as calcium, magnesium, iron and phosphorus. It is one of the few foods that have in its composition all the essential amino acids, standing out from other cereals such as rice or wheat. It is an excellent source of bioactive compounds, which have antioxidant, cytotoxic, antidiabetic and anti-inflammatory properties. With respect to quinoa leaves, several studies have indicated that they have higher protein content than grains, as well as inorganic nutrients such as calcium, phosphorus, iron and zinc. In addition, they can potentially serve as a rich source of phenolic compounds and carotenoids. Conventional heat treatments greatly or slightly affect the composition of the food, including bioactive compounds and antioxidant capacity. Germination provides the product with greater bioavailability and an increase in bioactive compounds. The purpose of this work was to document research on quinoa and its leaves, the effect of thermal treatments and germination on its bioactive compounds, in order to promote the creation and innovation of products based on its bioactive compounds, thus combating malnutrition in our population.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientia Agropecuaria
Scientia Agropecuaria AGRICULTURE, DAIRY & ANIMAL SCIENCE-
CiteScore
3.50
自引率
0.00%
发文量
27
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信