Fernando Luiz Pio DOS SANTOS, M. Bendahmane, Elmahdi Erraji, Fahd Karami
{"title":"用于评估登革热在巴西分布的连续时空数学模型","authors":"Fernando Luiz Pio DOS SANTOS, M. Bendahmane, Elmahdi Erraji, Fahd Karami","doi":"10.1142/s0218339023300026","DOIUrl":null,"url":null,"abstract":"In this paper, we developed an optimal control of a reaction–diffusion mathematical model, describing the spatial spread of dengue infection. Compartments for human and vector populations are considered in the model, including a compartment for the aquatic phase of mosquitoes. This enabled us to discuss the vertical transmission effects on the spread of the disease in a two-dimensional domain, using demographic data for different scenarios. The model was analyzed, establishing the existence and convergence of the weak solution for the model. The convergence of the numerical scheme to the weak solution was proved. For numerical approximation, we adopted the finite element scheme to solve direct and adjoint state systems. We also used the nonlinear gradient descent method to solve the optimal control problem, where the optimal management of government investment was proposed and leads to more effective dengue fever infection control. These results may help us understand the complex dynamics driven by dengue and assess the public health policies in the control of the disease.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A CONTINUOUS SPATIAL AND TEMPORAL MATHEMATICAL MODEL FOR ASSESSING THE DISTRIBUTION OF DENGUE IN BRAZIL WITH CONTROL\",\"authors\":\"Fernando Luiz Pio DOS SANTOS, M. Bendahmane, Elmahdi Erraji, Fahd Karami\",\"doi\":\"10.1142/s0218339023300026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we developed an optimal control of a reaction–diffusion mathematical model, describing the spatial spread of dengue infection. Compartments for human and vector populations are considered in the model, including a compartment for the aquatic phase of mosquitoes. This enabled us to discuss the vertical transmission effects on the spread of the disease in a two-dimensional domain, using demographic data for different scenarios. The model was analyzed, establishing the existence and convergence of the weak solution for the model. The convergence of the numerical scheme to the weak solution was proved. For numerical approximation, we adopted the finite element scheme to solve direct and adjoint state systems. We also used the nonlinear gradient descent method to solve the optimal control problem, where the optimal management of government investment was proposed and leads to more effective dengue fever infection control. These results may help us understand the complex dynamics driven by dengue and assess the public health policies in the control of the disease.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218339023300026\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/s0218339023300026","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A CONTINUOUS SPATIAL AND TEMPORAL MATHEMATICAL MODEL FOR ASSESSING THE DISTRIBUTION OF DENGUE IN BRAZIL WITH CONTROL
In this paper, we developed an optimal control of a reaction–diffusion mathematical model, describing the spatial spread of dengue infection. Compartments for human and vector populations are considered in the model, including a compartment for the aquatic phase of mosquitoes. This enabled us to discuss the vertical transmission effects on the spread of the disease in a two-dimensional domain, using demographic data for different scenarios. The model was analyzed, establishing the existence and convergence of the weak solution for the model. The convergence of the numerical scheme to the weak solution was proved. For numerical approximation, we adopted the finite element scheme to solve direct and adjoint state systems. We also used the nonlinear gradient descent method to solve the optimal control problem, where the optimal management of government investment was proposed and leads to more effective dengue fever infection control. These results may help us understand the complex dynamics driven by dengue and assess the public health policies in the control of the disease.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.