Alejandro Vigna-G'omez, Javier Murillo, Manelik Ramirez, A. Borbolla, Ian M'arquez, Prasun K. Ray
{"title":"2021年墨西哥立法选举基于推特的选举模型设计与分析","authors":"Alejandro Vigna-G'omez, Javier Murillo, Manelik Ramirez, A. Borbolla, Ian M'arquez, Prasun K. Ray","doi":"10.1140/epjds/s13688-023-00401-w","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":11887,"journal":{"name":"EPJ Data Science","volume":"12 1","pages":"1-17"},"PeriodicalIF":3.0000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and analysis of tweet-based election models for the 2021 Mexican legislative election\",\"authors\":\"Alejandro Vigna-G'omez, Javier Murillo, Manelik Ramirez, A. Borbolla, Ian M'arquez, Prasun K. Ray\",\"doi\":\"10.1140/epjds/s13688-023-00401-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":11887,\"journal\":{\"name\":\"EPJ Data Science\",\"volume\":\"12 1\",\"pages\":\"1-17\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Data Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1140/epjds/s13688-023-00401-w\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Data Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1140/epjds/s13688-023-00401-w","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
期刊介绍:
EPJ Data Science covers a broad range of research areas and applications and particularly encourages contributions from techno-socio-economic systems, where it comprises those research lines that now regard the digital “tracks” of human beings as first-order objects for scientific investigation. Topics include, but are not limited to, human behavior, social interaction (including animal societies), economic and financial systems, management and business networks, socio-technical infrastructure, health and environmental systems, the science of science, as well as general risk and crisis scenario forecasting up to and including policy advice.