M. Nepomuceno, Hooman Rahemi, Tolga Cenesizoglu, Laurent Charlin
{"title":"我们应该喂巨魔吗?使用营销人员生成的内容来解释平均毒性和产品使用","authors":"M. Nepomuceno, Hooman Rahemi, Tolga Cenesizoglu, Laurent Charlin","doi":"10.1177/10949968231172153","DOIUrl":null,"url":null,"abstract":"Marketers and researchers recognize the importance and impact on consumer behavior of marketer-generated content (MGC) in social media channels. In this study, the authors present a method to classify MGC using a combination of unsupervised and supervised machine learning. They gather a large data set of posts from Facebook, Instagram, and Twitter and use a time-series model (panel-data vector autoregression) to demonstrate how MGC can be used to explain average toxicity on the part of users. They contribute to the field by examining what types of MGC lead to toxic comments and how these toxic comments impact product usage. The authors find that MGC that demonstrates the quality of products and MGC that is aimed at creating a sense of belonging to a group are more likely to increase average toxicity. Furthermore, the authors find that higher average toxicity in social media communities leads to an increase in usage of the focal product. Finally, the results contribute to the literature by providing insights on the impact of MGC on product usage.","PeriodicalId":48260,"journal":{"name":"Journal of Interactive Marketing","volume":"58 1","pages":"440 - 462"},"PeriodicalIF":6.8000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Should We Feed the Trolls? Using Marketer-Generated Content to Explain Average Toxicity and Product Usage\",\"authors\":\"M. Nepomuceno, Hooman Rahemi, Tolga Cenesizoglu, Laurent Charlin\",\"doi\":\"10.1177/10949968231172153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Marketers and researchers recognize the importance and impact on consumer behavior of marketer-generated content (MGC) in social media channels. In this study, the authors present a method to classify MGC using a combination of unsupervised and supervised machine learning. They gather a large data set of posts from Facebook, Instagram, and Twitter and use a time-series model (panel-data vector autoregression) to demonstrate how MGC can be used to explain average toxicity on the part of users. They contribute to the field by examining what types of MGC lead to toxic comments and how these toxic comments impact product usage. The authors find that MGC that demonstrates the quality of products and MGC that is aimed at creating a sense of belonging to a group are more likely to increase average toxicity. Furthermore, the authors find that higher average toxicity in social media communities leads to an increase in usage of the focal product. Finally, the results contribute to the literature by providing insights on the impact of MGC on product usage.\",\"PeriodicalId\":48260,\"journal\":{\"name\":\"Journal of Interactive Marketing\",\"volume\":\"58 1\",\"pages\":\"440 - 462\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Interactive Marketing\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1177/10949968231172153\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Interactive Marketing","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1177/10949968231172153","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
Should We Feed the Trolls? Using Marketer-Generated Content to Explain Average Toxicity and Product Usage
Marketers and researchers recognize the importance and impact on consumer behavior of marketer-generated content (MGC) in social media channels. In this study, the authors present a method to classify MGC using a combination of unsupervised and supervised machine learning. They gather a large data set of posts from Facebook, Instagram, and Twitter and use a time-series model (panel-data vector autoregression) to demonstrate how MGC can be used to explain average toxicity on the part of users. They contribute to the field by examining what types of MGC lead to toxic comments and how these toxic comments impact product usage. The authors find that MGC that demonstrates the quality of products and MGC that is aimed at creating a sense of belonging to a group are more likely to increase average toxicity. Furthermore, the authors find that higher average toxicity in social media communities leads to an increase in usage of the focal product. Finally, the results contribute to the literature by providing insights on the impact of MGC on product usage.
期刊介绍:
The Journal of Interactive Marketing aims to explore and discuss issues in the dynamic field of interactive marketing, encompassing both online and offline topics related to analyzing, targeting, and serving individual customers. The journal seeks to publish innovative, high-quality research that presents original results, methodologies, theories, and applications in interactive marketing. Manuscripts should address current or emerging managerial challenges and have the potential to influence both practice and theory in the field. The journal welcomes conceptually rigorous approaches of any type and does not favor or exclude specific methodologies.