Yu. V. Benkovskii, D. M. Croitoru, V. I. Petrenko, P. N. Stoichev, E. V. Yurchenko, A. I. Dikusar
{"title":"电火花合金化钢的成分与复合表面性能的相互关系","authors":"Yu. V. Benkovskii, D. M. Croitoru, V. I. Petrenko, P. N. Stoichev, E. V. Yurchenko, A. I. Dikusar","doi":"10.3103/S1068375523010039","DOIUrl":null,"url":null,"abstract":"<p>The study of elemental composition of surface composites produced by electrospark alloying (ESA) of Type 45, 65G, and St3 steels with hard T15K6 and VK8 alloys and Type 45 and St3 steels (in the “steel-on-steel” mode) showed that the formed surface layers consisted of the ESA-modified steel substrate material by ~70%. The effects that the steel composition has on coefficients characterizing the transfer of the processing electrode material onto the substrate, surface roughness, microhardness, and wear resistance of resulting surfaces were investigated. It was found that the wear resistance of the composites is mainly determined by the nature of surface being processed and, to a much lesser extent, by the processing electrode material, surface roughness and microhardness.</p>","PeriodicalId":49315,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"59 1","pages":"1 - 6"},"PeriodicalIF":1.1000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interrelation between the Composition of Steel Treated by Electrospark Alloying and the Properties of Resulting Composite Surface\",\"authors\":\"Yu. V. Benkovskii, D. M. Croitoru, V. I. Petrenko, P. N. Stoichev, E. V. Yurchenko, A. I. Dikusar\",\"doi\":\"10.3103/S1068375523010039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The study of elemental composition of surface composites produced by electrospark alloying (ESA) of Type 45, 65G, and St3 steels with hard T15K6 and VK8 alloys and Type 45 and St3 steels (in the “steel-on-steel” mode) showed that the formed surface layers consisted of the ESA-modified steel substrate material by ~70%. The effects that the steel composition has on coefficients characterizing the transfer of the processing electrode material onto the substrate, surface roughness, microhardness, and wear resistance of resulting surfaces were investigated. It was found that the wear resistance of the composites is mainly determined by the nature of surface being processed and, to a much lesser extent, by the processing electrode material, surface roughness and microhardness.</p>\",\"PeriodicalId\":49315,\"journal\":{\"name\":\"Surface Engineering and Applied Electrochemistry\",\"volume\":\"59 1\",\"pages\":\"1 - 6\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Engineering and Applied Electrochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1068375523010039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering and Applied Electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1068375523010039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Interrelation between the Composition of Steel Treated by Electrospark Alloying and the Properties of Resulting Composite Surface
The study of elemental composition of surface composites produced by electrospark alloying (ESA) of Type 45, 65G, and St3 steels with hard T15K6 and VK8 alloys and Type 45 and St3 steels (in the “steel-on-steel” mode) showed that the formed surface layers consisted of the ESA-modified steel substrate material by ~70%. The effects that the steel composition has on coefficients characterizing the transfer of the processing electrode material onto the substrate, surface roughness, microhardness, and wear resistance of resulting surfaces were investigated. It was found that the wear resistance of the composites is mainly determined by the nature of surface being processed and, to a much lesser extent, by the processing electrode material, surface roughness and microhardness.
期刊介绍:
Surface Engineering and Applied Electrochemistry is a journal that publishes original and review articles on theory and applications of electroerosion and electrochemical methods for the treatment of materials; physical and chemical methods for the preparation of macro-, micro-, and nanomaterials and their properties; electrical processes in engineering, chemistry, and methods for the processing of biological products and food; and application electromagnetic fields in biological systems.