Gianni Mena , Stephanie Chaves-Araya , Johelen Chacón , Enikő Török , Ferenc Török , Fabián Bonilla , Mahmood Sasa , José María Gutiérrez , Bruno Lomonte , Julián Fernández
{"title":"野鼠毒液的蛋白质组学和毒理学分析及抗蛇毒血清的中和作用","authors":"Gianni Mena , Stephanie Chaves-Araya , Johelen Chacón , Enikő Török , Ferenc Török , Fabián Bonilla , Mahmood Sasa , José María Gutiérrez , Bruno Lomonte , Julián Fernández","doi":"10.1016/j.toxcx.2022.100097","DOIUrl":null,"url":null,"abstract":"<div><p>Coralsnakes belong to the family Elapidae and possess venoms which are lethal to humans and can be grouped based on the predominance of either three finger toxins (3FTxs) or phospholipases A<sub>2</sub> (PLA<sub>2</sub>s). A proteomic and toxicological analysis of the venom of the coralsnake <em>Micrurus yatesi</em> was performed. This species, distributed in southeastern Costa Rica, was formerly considered a subspecies of <em>M. alleni</em>. Results showed that this venom is PLA<sub>2</sub>-rich, in contrast with the previously studied venom of <em>Micrurus alleni</em>. Toxicological evaluation of the venom, in accordance with proteomic data, revealed that it has a markedly higher <em>in vitro</em> PLA<sub>2</sub> activity upon a synthetic substrate than M. <em>alleni.</em> The evaluation of <em>in vivo</em> myotoxicity in CD-1 mice using histological evaluation and plasma creatine kinase release also showed that <em>M. yatesi</em> venom caused muscle damage. A commercial equine antivenom prepared using the venom of <em>Micrurus nigrocinctus</em> displayed a similar recognition of the venoms of <em>M. yatesi</em> and <em>M. nigrocinctus</em> by enzyme immunoassay<em>.</em> This antivenom also immunorecognized the main fractions of the venom of <em>M. yatesi</em> and was able to neutralize its lethal effect in a murine model.</p></div>","PeriodicalId":37124,"journal":{"name":"Toxicon: X","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590171022000078/pdfft?md5=d8f7513dd9a61f46cdd2b5eae98b0e01&pid=1-s2.0-S2590171022000078-main.pdf","citationCount":"6","resultStr":"{\"title\":\"Proteomic and toxicological analysis of the venom of Micrurus yatesi and its neutralization by an antivenom\",\"authors\":\"Gianni Mena , Stephanie Chaves-Araya , Johelen Chacón , Enikő Török , Ferenc Török , Fabián Bonilla , Mahmood Sasa , José María Gutiérrez , Bruno Lomonte , Julián Fernández\",\"doi\":\"10.1016/j.toxcx.2022.100097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Coralsnakes belong to the family Elapidae and possess venoms which are lethal to humans and can be grouped based on the predominance of either three finger toxins (3FTxs) or phospholipases A<sub>2</sub> (PLA<sub>2</sub>s). A proteomic and toxicological analysis of the venom of the coralsnake <em>Micrurus yatesi</em> was performed. This species, distributed in southeastern Costa Rica, was formerly considered a subspecies of <em>M. alleni</em>. Results showed that this venom is PLA<sub>2</sub>-rich, in contrast with the previously studied venom of <em>Micrurus alleni</em>. Toxicological evaluation of the venom, in accordance with proteomic data, revealed that it has a markedly higher <em>in vitro</em> PLA<sub>2</sub> activity upon a synthetic substrate than M. <em>alleni.</em> The evaluation of <em>in vivo</em> myotoxicity in CD-1 mice using histological evaluation and plasma creatine kinase release also showed that <em>M. yatesi</em> venom caused muscle damage. A commercial equine antivenom prepared using the venom of <em>Micrurus nigrocinctus</em> displayed a similar recognition of the venoms of <em>M. yatesi</em> and <em>M. nigrocinctus</em> by enzyme immunoassay<em>.</em> This antivenom also immunorecognized the main fractions of the venom of <em>M. yatesi</em> and was able to neutralize its lethal effect in a murine model.</p></div>\",\"PeriodicalId\":37124,\"journal\":{\"name\":\"Toxicon: X\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590171022000078/pdfft?md5=d8f7513dd9a61f46cdd2b5eae98b0e01&pid=1-s2.0-S2590171022000078-main.pdf\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicon: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590171022000078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicon: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590171022000078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Proteomic and toxicological analysis of the venom of Micrurus yatesi and its neutralization by an antivenom
Coralsnakes belong to the family Elapidae and possess venoms which are lethal to humans and can be grouped based on the predominance of either three finger toxins (3FTxs) or phospholipases A2 (PLA2s). A proteomic and toxicological analysis of the venom of the coralsnake Micrurus yatesi was performed. This species, distributed in southeastern Costa Rica, was formerly considered a subspecies of M. alleni. Results showed that this venom is PLA2-rich, in contrast with the previously studied venom of Micrurus alleni. Toxicological evaluation of the venom, in accordance with proteomic data, revealed that it has a markedly higher in vitro PLA2 activity upon a synthetic substrate than M. alleni. The evaluation of in vivo myotoxicity in CD-1 mice using histological evaluation and plasma creatine kinase release also showed that M. yatesi venom caused muscle damage. A commercial equine antivenom prepared using the venom of Micrurus nigrocinctus displayed a similar recognition of the venoms of M. yatesi and M. nigrocinctus by enzyme immunoassay. This antivenom also immunorecognized the main fractions of the venom of M. yatesi and was able to neutralize its lethal effect in a murine model.