条上线性化双曲Prandtl系统的gevrey -3类正则性

IF 1.2 3区 数学 Q2 MATHEMATICS, APPLIED
Francesco De Anna, Joshua Kortum, Stefano Scrobogna
{"title":"条上线性化双曲Prandtl系统的gevrey -3类正则性","authors":"Francesco De Anna,&nbsp;Joshua Kortum,&nbsp;Stefano Scrobogna","doi":"10.1007/s00021-023-00821-8","DOIUrl":null,"url":null,"abstract":"<div><p>In the present paper, we address a physically-meaningful extension of the linearised Prandtl equations around a shear flow. Without any structural assumption, it is well-known that the optimal regularity of Prandtl is given by the class Gevrey 2 along the horizontal direction. The goal of this paper is to overcome this barrier, by dealing with the linearisation of the so-called <i>hyperbolic Prandtl equations</i> in a strip domain. We prove that the local well-posedness around a general shear flow <span>\\(U_{\\textrm{sh}}\\in W^{3, \\infty }(0,1)\\)</span> holds true, with solutions that are Gevrey class 3 in the horizontal direction.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"25 4","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00021-023-00821-8.pdf","citationCount":"2","resultStr":"{\"title\":\"Gevrey-Class-3 Regularity of the Linearised Hyperbolic Prandtl System on a Strip\",\"authors\":\"Francesco De Anna,&nbsp;Joshua Kortum,&nbsp;Stefano Scrobogna\",\"doi\":\"10.1007/s00021-023-00821-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the present paper, we address a physically-meaningful extension of the linearised Prandtl equations around a shear flow. Without any structural assumption, it is well-known that the optimal regularity of Prandtl is given by the class Gevrey 2 along the horizontal direction. The goal of this paper is to overcome this barrier, by dealing with the linearisation of the so-called <i>hyperbolic Prandtl equations</i> in a strip domain. We prove that the local well-posedness around a general shear flow <span>\\\\(U_{\\\\textrm{sh}}\\\\in W^{3, \\\\infty }(0,1)\\\\)</span> holds true, with solutions that are Gevrey class 3 in the horizontal direction.</p></div>\",\"PeriodicalId\":649,\"journal\":{\"name\":\"Journal of Mathematical Fluid Mechanics\",\"volume\":\"25 4\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00021-023-00821-8.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Fluid Mechanics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00021-023-00821-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-023-00821-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们讨论了围绕剪切流的线性化普朗特方程的物理意义上的扩展。众所周知,在没有任何结构假设的情况下,Prandtl的最优正则性是由Gevrey 2类沿水平方向给出的。本文的目标是克服这一障碍,通过处理所谓的双曲普朗特方程的线性化在条形域。我们证明了一般剪切流\(U_{\textrm{sh}}\in W^{3, \infty }(0,1)\)周围的局部适定性成立,且解在水平方向上为Gevrey类3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gevrey-Class-3 Regularity of the Linearised Hyperbolic Prandtl System on a Strip

In the present paper, we address a physically-meaningful extension of the linearised Prandtl equations around a shear flow. Without any structural assumption, it is well-known that the optimal regularity of Prandtl is given by the class Gevrey 2 along the horizontal direction. The goal of this paper is to overcome this barrier, by dealing with the linearisation of the so-called hyperbolic Prandtl equations in a strip domain. We prove that the local well-posedness around a general shear flow \(U_{\textrm{sh}}\in W^{3, \infty }(0,1)\) holds true, with solutions that are Gevrey class 3 in the horizontal direction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
15.40%
发文量
97
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信