{"title":"大麻单萜合成酶:评价结构-功能关系","authors":"B. Markus Lange, Narayanan Srividya","doi":"10.1007/s11101-023-09861-4","DOIUrl":null,"url":null,"abstract":"<div><p>Terpene synthases catalyze the first committed step in the biosynthesis of terpenes, a structurally diverse class of natural products that also encompasses volatiles derived from precursors in the C10 to C15 range (termed monoterpenes and sesquiterpenes, respectively). In the review section of this article, we are providing information about all functionally characterized monoterpene synthases (MTSs) and sesquiterpene synthases (STSs) of <i>Cannabis sativa</i> L. We are also exploring the locations of MTSs and STSs in the chromosome-level assembly of the reference chemovar CBDRx. A follow-up computational structure–function analysis focuses on MTSs, as there is already a rich literature available on the topic. More specifically, by employing sequence comparisons and homology structural modeling, we infer which amino acid residues are likely to constrain the available space in the active site of cannabis MTSs. The emphasis of these studies was to investigate why some MTSs accept only a C10 diphosphate as substrate, while mixed MTS/STS enzymes also accommodate a C15 diphosphate. By combining a literature review and computational analyses in a hybrid format, we are laying the foundation for future studies to better understand the determinants of substrate and product specificity in these fascinating enzymes.</p></div>","PeriodicalId":733,"journal":{"name":"Phytochemistry Reviews","volume":"22 2","pages":"449 - 465"},"PeriodicalIF":7.3000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cannabis monoterpene synthases: evaluating structure–function relationships\",\"authors\":\"B. Markus Lange, Narayanan Srividya\",\"doi\":\"10.1007/s11101-023-09861-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Terpene synthases catalyze the first committed step in the biosynthesis of terpenes, a structurally diverse class of natural products that also encompasses volatiles derived from precursors in the C10 to C15 range (termed monoterpenes and sesquiterpenes, respectively). In the review section of this article, we are providing information about all functionally characterized monoterpene synthases (MTSs) and sesquiterpene synthases (STSs) of <i>Cannabis sativa</i> L. We are also exploring the locations of MTSs and STSs in the chromosome-level assembly of the reference chemovar CBDRx. A follow-up computational structure–function analysis focuses on MTSs, as there is already a rich literature available on the topic. More specifically, by employing sequence comparisons and homology structural modeling, we infer which amino acid residues are likely to constrain the available space in the active site of cannabis MTSs. The emphasis of these studies was to investigate why some MTSs accept only a C10 diphosphate as substrate, while mixed MTS/STS enzymes also accommodate a C15 diphosphate. By combining a literature review and computational analyses in a hybrid format, we are laying the foundation for future studies to better understand the determinants of substrate and product specificity in these fascinating enzymes.</p></div>\",\"PeriodicalId\":733,\"journal\":{\"name\":\"Phytochemistry Reviews\",\"volume\":\"22 2\",\"pages\":\"449 - 465\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2023-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytochemistry Reviews\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11101-023-09861-4\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytochemistry Reviews","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s11101-023-09861-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Terpene synthases catalyze the first committed step in the biosynthesis of terpenes, a structurally diverse class of natural products that also encompasses volatiles derived from precursors in the C10 to C15 range (termed monoterpenes and sesquiterpenes, respectively). In the review section of this article, we are providing information about all functionally characterized monoterpene synthases (MTSs) and sesquiterpene synthases (STSs) of Cannabis sativa L. We are also exploring the locations of MTSs and STSs in the chromosome-level assembly of the reference chemovar CBDRx. A follow-up computational structure–function analysis focuses on MTSs, as there is already a rich literature available on the topic. More specifically, by employing sequence comparisons and homology structural modeling, we infer which amino acid residues are likely to constrain the available space in the active site of cannabis MTSs. The emphasis of these studies was to investigate why some MTSs accept only a C10 diphosphate as substrate, while mixed MTS/STS enzymes also accommodate a C15 diphosphate. By combining a literature review and computational analyses in a hybrid format, we are laying the foundation for future studies to better understand the determinants of substrate and product specificity in these fascinating enzymes.
期刊介绍:
Phytochemistry Reviews is the sole review journal encompassing all facets of phytochemistry. It publishes peer-reviewed papers in six issues annually, including topical issues often stemming from meetings organized by the Phytochemical Society of Europe. Additionally, the journal welcomes original review papers that contribute to advancing knowledge in various aspects of plant chemistry, function, biosynthesis, effects on plant and animal physiology, pathology, and their application in agriculture and industry. Invited meeting papers are supplemented with additional review papers, providing a comprehensive overview of the current status across all areas of phytochemistry.