基于物联网的花生植株蒸散量深度神经网络估计

IF 0.6 Q4 AGRICULTURAL ENGINEERING
S. Suhardi, B. Marhaenanto, Bayu Taruna Widjaja Putra, S. Winarso
{"title":"基于物联网的花生植株蒸散量深度神经网络估计","authors":"S. Suhardi, B. Marhaenanto, Bayu Taruna Widjaja Putra, S. Winarso","doi":"10.35633/inmateh-70-47","DOIUrl":null,"url":null,"abstract":"The water availability in soil strongly influences crop growth by sustaining photosynthesis, respiration, and the maintenance of plant temperature. The water availability will decrease due to crop evapotranspiration (ETc) which is influenced by reference evapotranspiration (ETo) and crop coefficient (Kc). During water shortage, Kc is strongly influenced by soil evaporation coefficient (Ke) and basal crop coefficient (Kcb) which can be calculated using the Blue Red Vegetation Index (BRVI). The purpose of this study was to apply and evaluate a new method of estimating ETo, Ke, and Kcb at a research site using a Deep Neural Network (DNN) with minimum requirements. The results of the ETo estimation using DNN shows a good output with a determinant coefficient (R2) being 0.774. Meanwhile, the estimates of Ke and Kcb show excellent results with the determinant coefficient (R2) being 0.9496 and 0.999 respectively.","PeriodicalId":44197,"journal":{"name":"INMATEH-Agricultural Engineering","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IoT-BASED EVAPOTRANSPIRATION ESTIMATION OF PEANUT PLANT USING DEEP NEURAL NETWORK\",\"authors\":\"S. Suhardi, B. Marhaenanto, Bayu Taruna Widjaja Putra, S. Winarso\",\"doi\":\"10.35633/inmateh-70-47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The water availability in soil strongly influences crop growth by sustaining photosynthesis, respiration, and the maintenance of plant temperature. The water availability will decrease due to crop evapotranspiration (ETc) which is influenced by reference evapotranspiration (ETo) and crop coefficient (Kc). During water shortage, Kc is strongly influenced by soil evaporation coefficient (Ke) and basal crop coefficient (Kcb) which can be calculated using the Blue Red Vegetation Index (BRVI). The purpose of this study was to apply and evaluate a new method of estimating ETo, Ke, and Kcb at a research site using a Deep Neural Network (DNN) with minimum requirements. The results of the ETo estimation using DNN shows a good output with a determinant coefficient (R2) being 0.774. Meanwhile, the estimates of Ke and Kcb show excellent results with the determinant coefficient (R2) being 0.9496 and 0.999 respectively.\",\"PeriodicalId\":44197,\"journal\":{\"name\":\"INMATEH-Agricultural Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INMATEH-Agricultural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35633/inmateh-70-47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INMATEH-Agricultural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35633/inmateh-70-47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

土壤水分有效性通过维持光合作用、呼吸作用和维持植物温度而强烈影响作物生长。作物蒸散量(ETc)受参考蒸散量(ETo)和作物系数(Kc)的影响而降低水分有效性。在缺水期间,Kc受土壤蒸发系数(Ke)和基础作物系数(Kcb)的强烈影响,两者可通过蓝红植被指数(BRVI)计算得到。本研究的目的是应用和评估一种新的方法来估计ETo, Ke和Kcb在一个研究地点使用深度神经网络(DNN)的最低要求。使用DNN的ETo估计结果显示出良好的输出,决定系数(R2)为0.774。同时,Ke和Kcb的估计值表现出较好的结果,决定系数(R2)分别为0.9496和0.999。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IoT-BASED EVAPOTRANSPIRATION ESTIMATION OF PEANUT PLANT USING DEEP NEURAL NETWORK
The water availability in soil strongly influences crop growth by sustaining photosynthesis, respiration, and the maintenance of plant temperature. The water availability will decrease due to crop evapotranspiration (ETc) which is influenced by reference evapotranspiration (ETo) and crop coefficient (Kc). During water shortage, Kc is strongly influenced by soil evaporation coefficient (Ke) and basal crop coefficient (Kcb) which can be calculated using the Blue Red Vegetation Index (BRVI). The purpose of this study was to apply and evaluate a new method of estimating ETo, Ke, and Kcb at a research site using a Deep Neural Network (DNN) with minimum requirements. The results of the ETo estimation using DNN shows a good output with a determinant coefficient (R2) being 0.774. Meanwhile, the estimates of Ke and Kcb show excellent results with the determinant coefficient (R2) being 0.9496 and 0.999 respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
INMATEH-Agricultural Engineering
INMATEH-Agricultural Engineering AGRICULTURAL ENGINEERING-
CiteScore
1.30
自引率
57.10%
发文量
98
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信