燃气轮机用绝热平板多孔沟槽冷却的影响

IF 0.7 4区 工程技术 Q4 ENGINEERING, AEROSPACE
Ved Prakash, S. Chandel, D. Thakur, Ranjan Mishra
{"title":"燃气轮机用绝热平板多孔沟槽冷却的影响","authors":"Ved Prakash, S. Chandel, D. Thakur, Ranjan Mishra","doi":"10.1515/tjj-2022-0061","DOIUrl":null,"url":null,"abstract":"Abstract A 3D numerical analysis on an adiabatic flat plate for multi-hole trench cooling with forward, backward and mixed injection holes is performed in the current investigation. The numerical setup is validated before the performances of different cooling configurations are compared. The effect of three different multi-hole trench arrangements, square-diamond, long-diamond, and super-long-diamond with constant perforated percentage (3.27%), on film cooling performance is studied at blowing ratio 1.0. The row-to-row interaction between coolant jets and mainstream is analysed, and lateral film cooling effectiveness is calculated downstream. The dimensionless temperature contour overlaid with streamlines concluded that the SLD trench hole arrangement with forward injection forms a developed effusion layer due to counter-rotating vortex pairs, which helps in proper mixing of coolant jets into the mainstream and improves film cooling effectiveness in lateral as well as in longitudinal direction. It is observed that super-long-diamond arrangement with forward injection provides the highest film cooling effectiveness than square-diamond and long-diamond arrangements and favours early development of the coolant film layer.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of multi-hole trench cooling on an adiabatic flat plate for gas turbine application\",\"authors\":\"Ved Prakash, S. Chandel, D. Thakur, Ranjan Mishra\",\"doi\":\"10.1515/tjj-2022-0061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A 3D numerical analysis on an adiabatic flat plate for multi-hole trench cooling with forward, backward and mixed injection holes is performed in the current investigation. The numerical setup is validated before the performances of different cooling configurations are compared. The effect of three different multi-hole trench arrangements, square-diamond, long-diamond, and super-long-diamond with constant perforated percentage (3.27%), on film cooling performance is studied at blowing ratio 1.0. The row-to-row interaction between coolant jets and mainstream is analysed, and lateral film cooling effectiveness is calculated downstream. The dimensionless temperature contour overlaid with streamlines concluded that the SLD trench hole arrangement with forward injection forms a developed effusion layer due to counter-rotating vortex pairs, which helps in proper mixing of coolant jets into the mainstream and improves film cooling effectiveness in lateral as well as in longitudinal direction. It is observed that super-long-diamond arrangement with forward injection provides the highest film cooling effectiveness than square-diamond and long-diamond arrangements and favours early development of the coolant film layer.\",\"PeriodicalId\":50284,\"journal\":{\"name\":\"International Journal of Turbo & Jet-Engines\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Turbo & Jet-Engines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/tjj-2022-0061\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Turbo & Jet-Engines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/tjj-2022-0061","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 1

摘要

摘要对具有前、后、混合喷注孔的绝热平板进行了三维数值分析。在对不同冷却方式的性能进行比较之前,对数值设置进行了验证。在吹气比为1.0的条件下,研究了定孔率(3.27%)条件下,正方形金刚石、长金刚石和超长金刚石三种不同的多孔布置方式对气膜冷却性能的影响。分析了冷却剂射流与主流之间的相互作用,并计算了下游的侧膜冷却效率。由流线叠加的无因次温度曲线可知,前向喷射的SLD槽孔布置由于反向旋转的涡对形成了发达的射流层,有利于冷却剂射流在主流内的适当混合,提高了横向和纵向的气膜冷却效果。结果表明,前喷的超长菱形排列比方菱形排列和长菱形排列具有最高的冷却效果,有利于冷却液膜层的早期发育。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of multi-hole trench cooling on an adiabatic flat plate for gas turbine application
Abstract A 3D numerical analysis on an adiabatic flat plate for multi-hole trench cooling with forward, backward and mixed injection holes is performed in the current investigation. The numerical setup is validated before the performances of different cooling configurations are compared. The effect of three different multi-hole trench arrangements, square-diamond, long-diamond, and super-long-diamond with constant perforated percentage (3.27%), on film cooling performance is studied at blowing ratio 1.0. The row-to-row interaction between coolant jets and mainstream is analysed, and lateral film cooling effectiveness is calculated downstream. The dimensionless temperature contour overlaid with streamlines concluded that the SLD trench hole arrangement with forward injection forms a developed effusion layer due to counter-rotating vortex pairs, which helps in proper mixing of coolant jets into the mainstream and improves film cooling effectiveness in lateral as well as in longitudinal direction. It is observed that super-long-diamond arrangement with forward injection provides the highest film cooling effectiveness than square-diamond and long-diamond arrangements and favours early development of the coolant film layer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Turbo & Jet-Engines
International Journal of Turbo & Jet-Engines 工程技术-工程:宇航
CiteScore
1.90
自引率
11.10%
发文量
36
审稿时长
6 months
期刊介绍: The Main aim and scope of this Journal is to help improve each separate components R&D and superimpose separated results to get integrated systems by striving to reach the overall advanced design and benefits by integrating: (a) Physics, Aero, and Stealth Thermodynamics in simulations by flying unmanned or manned prototypes supported by integrated Computer Simulations based on: (b) Component R&D of: (i) Turbo and Jet-Engines, (ii) Airframe, (iii) Helmet-Aiming-Systems and Ammunition based on: (c) Anticipated New Programs Missions based on (d) IMPROVED RELIABILITY, DURABILITY, ECONOMICS, TACTICS, STRATEGIES and EDUCATION in both the civil and military domains of Turbo and Jet Engines. The International Journal of Turbo & Jet Engines is devoted to cutting edge research in theory and design of propagation of jet aircraft. It serves as an international publication organ for new ideas, insights and results from industry and academic research on thermodynamics, combustion, behavior of related materials at high temperatures, turbine and engine design, thrust vectoring and flight control as well as energy and environmental issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信