Vijay Patil, Shruti Mhamane, Suraj More, Atmaram Pawar, S. Arulmozhi
{"title":"探索姜黄素椰子油微乳在神经变性实验模型中的保护作用:配方开发、体外和体内研究的见解","authors":"Vijay Patil, Shruti Mhamane, Suraj More, Atmaram Pawar, S. Arulmozhi","doi":"10.1186/s43094-022-00441-5","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Neurodegenerative diseases are a major health concern which requires promising drugs with appropriate drug delivery systems. The aim of the present study was development and characterization of curcumin-loaded coconut oil microemulsion (Cur-ME) and to improve the pharmacokinetic and pharmacodynamics performance. Initially, solubility study and emulsification study were performed for preliminary screening of the components. Pseudoternary phase diagram was constructed using selected components, and composition of Cur-ME was finalized. Furthermore, in vitro drug release in vivo pharmacokinetics and pharmacodynamic was performed.\n</p><h3>Results</h3><p>The final formulation exhibited globule size less than 20 nm with PDI and zeta potential as 0.24 and −17 mV, respectively. The formulation showed more than 90% drug content with no signs of precipitation upon dilution and centrifugation. In vitro drug release revealed 2.12-fold improvement in dissolution. In vivo plasma pharmacokinetics of Cur-ME revealed twofolds and 2.48-fold improvement in AUC and Cmax, respectively, than that of Cur-Sol. In vivo pharmacokinetics in adult zebrafish revealed significant enhancement (<i>p</i> < 0.01) in curcumin delivery to the brain with 1.96-fold and 1.92-fold improvement in Cmax and AUC, respectively. Furthermore, the pharmacodynamics of the formulation was evaluated using trimethyl tin (TMT)-induced neurodegeneration in wistar rats. The results revealed that Cur-ME treated group significantly decreased the escape latency and pathlength as compared to the neurodegeneration control group. The observed effects were also markedly significant than Cur-Sol treated group. Further, the brain malondialdehyde (MDA) and glutathione (GSH) levels were found to be increased significantly as compared to Cur-Sol treated group.</p><h3>Conclusion</h3><p>The encouraging results exhibited by Cur-ME can be regarded as a mark of an effective formulation that can be used in neurodegeneration. Overall, these findings indicate that an orally delivered microemulsion has enormous potential for drug delivery to the brain.</p></div>","PeriodicalId":577,"journal":{"name":"Future Journal of Pharmaceutical Sciences","volume":"8 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://fjps.springeropen.com/counter/pdf/10.1186/s43094-022-00441-5","citationCount":"1","resultStr":"{\"title\":\"Exploring the protective effect exhibited by curcumin-loaded coconut oil microemulsion in the experimental models of neurodegeneration: an insight of formulation development, in vitro and in vivo study\",\"authors\":\"Vijay Patil, Shruti Mhamane, Suraj More, Atmaram Pawar, S. Arulmozhi\",\"doi\":\"10.1186/s43094-022-00441-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Neurodegenerative diseases are a major health concern which requires promising drugs with appropriate drug delivery systems. The aim of the present study was development and characterization of curcumin-loaded coconut oil microemulsion (Cur-ME) and to improve the pharmacokinetic and pharmacodynamics performance. Initially, solubility study and emulsification study were performed for preliminary screening of the components. Pseudoternary phase diagram was constructed using selected components, and composition of Cur-ME was finalized. Furthermore, in vitro drug release in vivo pharmacokinetics and pharmacodynamic was performed.\\n</p><h3>Results</h3><p>The final formulation exhibited globule size less than 20 nm with PDI and zeta potential as 0.24 and −17 mV, respectively. The formulation showed more than 90% drug content with no signs of precipitation upon dilution and centrifugation. In vitro drug release revealed 2.12-fold improvement in dissolution. In vivo plasma pharmacokinetics of Cur-ME revealed twofolds and 2.48-fold improvement in AUC and Cmax, respectively, than that of Cur-Sol. In vivo pharmacokinetics in adult zebrafish revealed significant enhancement (<i>p</i> < 0.01) in curcumin delivery to the brain with 1.96-fold and 1.92-fold improvement in Cmax and AUC, respectively. Furthermore, the pharmacodynamics of the formulation was evaluated using trimethyl tin (TMT)-induced neurodegeneration in wistar rats. The results revealed that Cur-ME treated group significantly decreased the escape latency and pathlength as compared to the neurodegeneration control group. The observed effects were also markedly significant than Cur-Sol treated group. Further, the brain malondialdehyde (MDA) and glutathione (GSH) levels were found to be increased significantly as compared to Cur-Sol treated group.</p><h3>Conclusion</h3><p>The encouraging results exhibited by Cur-ME can be regarded as a mark of an effective formulation that can be used in neurodegeneration. Overall, these findings indicate that an orally delivered microemulsion has enormous potential for drug delivery to the brain.</p></div>\",\"PeriodicalId\":577,\"journal\":{\"name\":\"Future Journal of Pharmaceutical Sciences\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2022-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://fjps.springeropen.com/counter/pdf/10.1186/s43094-022-00441-5\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Journal of Pharmaceutical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s43094-022-00441-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Journal of Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s43094-022-00441-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Exploring the protective effect exhibited by curcumin-loaded coconut oil microemulsion in the experimental models of neurodegeneration: an insight of formulation development, in vitro and in vivo study
Background
Neurodegenerative diseases are a major health concern which requires promising drugs with appropriate drug delivery systems. The aim of the present study was development and characterization of curcumin-loaded coconut oil microemulsion (Cur-ME) and to improve the pharmacokinetic and pharmacodynamics performance. Initially, solubility study and emulsification study were performed for preliminary screening of the components. Pseudoternary phase diagram was constructed using selected components, and composition of Cur-ME was finalized. Furthermore, in vitro drug release in vivo pharmacokinetics and pharmacodynamic was performed.
Results
The final formulation exhibited globule size less than 20 nm with PDI and zeta potential as 0.24 and −17 mV, respectively. The formulation showed more than 90% drug content with no signs of precipitation upon dilution and centrifugation. In vitro drug release revealed 2.12-fold improvement in dissolution. In vivo plasma pharmacokinetics of Cur-ME revealed twofolds and 2.48-fold improvement in AUC and Cmax, respectively, than that of Cur-Sol. In vivo pharmacokinetics in adult zebrafish revealed significant enhancement (p < 0.01) in curcumin delivery to the brain with 1.96-fold and 1.92-fold improvement in Cmax and AUC, respectively. Furthermore, the pharmacodynamics of the formulation was evaluated using trimethyl tin (TMT)-induced neurodegeneration in wistar rats. The results revealed that Cur-ME treated group significantly decreased the escape latency and pathlength as compared to the neurodegeneration control group. The observed effects were also markedly significant than Cur-Sol treated group. Further, the brain malondialdehyde (MDA) and glutathione (GSH) levels were found to be increased significantly as compared to Cur-Sol treated group.
Conclusion
The encouraging results exhibited by Cur-ME can be regarded as a mark of an effective formulation that can be used in neurodegeneration. Overall, these findings indicate that an orally delivered microemulsion has enormous potential for drug delivery to the brain.
期刊介绍:
Future Journal of Pharmaceutical Sciences (FJPS) is the official journal of the Future University in Egypt. It is a peer-reviewed, open access journal which publishes original research articles, review articles and case studies on all aspects of pharmaceutical sciences and technologies, pharmacy practice and related clinical aspects, and pharmacy education. The journal publishes articles covering developments in drug absorption and metabolism, pharmacokinetics and dynamics, drug delivery systems, drug targeting and nano-technology. It also covers development of new systems, methods and techniques in pharmacy education and practice. The scope of the journal also extends to cover advancements in toxicology, cell and molecular biology, biomedical research, clinical and pharmaceutical microbiology, pharmaceutical biotechnology, medicinal chemistry, phytochemistry and nutraceuticals.