Mohammad Alauthman, Ahmad Al-qerem, Bilal I. Sowan, A. Alsarhan, Mohammed Eshtay, A. Aldweesh, N. Aslam
{"title":"利用GAN增强小型医疗数据集分类性能","authors":"Mohammad Alauthman, Ahmad Al-qerem, Bilal I. Sowan, A. Alsarhan, Mohammed Eshtay, A. Aldweesh, N. Aslam","doi":"10.3390/informatics10010028","DOIUrl":null,"url":null,"abstract":"Developing an effective classification model in the medical field is challenging due to limited datasets. To address this issue, this study proposes using a generative adversarial network (GAN) as a data-augmentation technique. The research aims to enhance the classifier’s generalization performance, stability, and precision through the generation of synthetic data that closely resemble real data. We employed feature selection and applied five classification algorithms to thirteen benchmark medical datasets, augmented using the least-square GAN (LS-GAN). Evaluation of the generated samples using different ratios of augmented data showed that the support vector machine model outperforms other methods with larger samples. The proposed data augmentation approach using a GAN presents a promising solution for enhancing the performance of classification models in the healthcare field.","PeriodicalId":37100,"journal":{"name":"Informatics","volume":"10 1","pages":"28"},"PeriodicalIF":3.4000,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Enhancing Small Medical Dataset Classification Performance Using GAN\",\"authors\":\"Mohammad Alauthman, Ahmad Al-qerem, Bilal I. Sowan, A. Alsarhan, Mohammed Eshtay, A. Aldweesh, N. Aslam\",\"doi\":\"10.3390/informatics10010028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developing an effective classification model in the medical field is challenging due to limited datasets. To address this issue, this study proposes using a generative adversarial network (GAN) as a data-augmentation technique. The research aims to enhance the classifier’s generalization performance, stability, and precision through the generation of synthetic data that closely resemble real data. We employed feature selection and applied five classification algorithms to thirteen benchmark medical datasets, augmented using the least-square GAN (LS-GAN). Evaluation of the generated samples using different ratios of augmented data showed that the support vector machine model outperforms other methods with larger samples. The proposed data augmentation approach using a GAN presents a promising solution for enhancing the performance of classification models in the healthcare field.\",\"PeriodicalId\":37100,\"journal\":{\"name\":\"Informatics\",\"volume\":\"10 1\",\"pages\":\"28\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/informatics10010028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/informatics10010028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Enhancing Small Medical Dataset Classification Performance Using GAN
Developing an effective classification model in the medical field is challenging due to limited datasets. To address this issue, this study proposes using a generative adversarial network (GAN) as a data-augmentation technique. The research aims to enhance the classifier’s generalization performance, stability, and precision through the generation of synthetic data that closely resemble real data. We employed feature selection and applied five classification algorithms to thirteen benchmark medical datasets, augmented using the least-square GAN (LS-GAN). Evaluation of the generated samples using different ratios of augmented data showed that the support vector machine model outperforms other methods with larger samples. The proposed data augmentation approach using a GAN presents a promising solution for enhancing the performance of classification models in the healthcare field.