热带气旋引起贝塔环流和罗斯比波的综合分析

IF 2.2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Hyeong-Bin Cheong, Ye-Jin Nam, Chung-Hui Lee
{"title":"热带气旋引起贝塔环流和罗斯比波的综合分析","authors":"Hyeong-Bin Cheong,&nbsp;Ye-Jin Nam,&nbsp;Chung-Hui Lee","doi":"10.1007/s13143-022-00301-5","DOIUrl":null,"url":null,"abstract":"<div><p>Beta gyre and Rossby wave train induced by tropical cyclones were identified from the ERA5 global-reanalysis data of the recent 30 years using a composite method. To pick up the disturbances relevant to the beta gyre and Rossby wave train surrounding tropical cyclones, the disturbances were decomposed into three distinct horizontal scales including small, intermediate, and planetary-scale. Composite map of the disturbances containing small- and intermediate-scale showed a well-organized Rossby wave train. The orientation of wave train was found to depend on the translation direction of tropical cyclones, and also appeared to split into two orientations except for those translating in the west-northwestward direction. The wave energy of the wave train was shown to propagate along the wave train axis, which was inferred from the amplitude change with time within the wave train. The wave train shows a weak upward-westward tilt and increasing amplitude with height, implying the wave energy propagating upward. A dipole circulation cell, bearing a close resemblance to the beta gyre depicted in the theories and numerical models, was found from the Rossby wave train. The strength and orientation of the beta gyres were revealed to vary with the translation direction of the tropical cyclones, with the weakest and strongest amplitudes being found for the westward- and northward-translation cases, respectively. It was shown that the orientation of the beta gyre obtained by a lag-composite method rotates clockwise with time regardless of the translation direction of tropical cyclones.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"59 2","pages":"167 - 183"},"PeriodicalIF":2.2000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Composite Analysis of the Beta-gyre and Rossby Wave Induced by Tropical Cyclones\",\"authors\":\"Hyeong-Bin Cheong,&nbsp;Ye-Jin Nam,&nbsp;Chung-Hui Lee\",\"doi\":\"10.1007/s13143-022-00301-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Beta gyre and Rossby wave train induced by tropical cyclones were identified from the ERA5 global-reanalysis data of the recent 30 years using a composite method. To pick up the disturbances relevant to the beta gyre and Rossby wave train surrounding tropical cyclones, the disturbances were decomposed into three distinct horizontal scales including small, intermediate, and planetary-scale. Composite map of the disturbances containing small- and intermediate-scale showed a well-organized Rossby wave train. The orientation of wave train was found to depend on the translation direction of tropical cyclones, and also appeared to split into two orientations except for those translating in the west-northwestward direction. The wave energy of the wave train was shown to propagate along the wave train axis, which was inferred from the amplitude change with time within the wave train. The wave train shows a weak upward-westward tilt and increasing amplitude with height, implying the wave energy propagating upward. A dipole circulation cell, bearing a close resemblance to the beta gyre depicted in the theories and numerical models, was found from the Rossby wave train. The strength and orientation of the beta gyres were revealed to vary with the translation direction of the tropical cyclones, with the weakest and strongest amplitudes being found for the westward- and northward-translation cases, respectively. It was shown that the orientation of the beta gyre obtained by a lag-composite method rotates clockwise with time regardless of the translation direction of tropical cyclones.</p></div>\",\"PeriodicalId\":8556,\"journal\":{\"name\":\"Asia-Pacific Journal of Atmospheric Sciences\",\"volume\":\"59 2\",\"pages\":\"167 - 183\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia-Pacific Journal of Atmospheric Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13143-022-00301-5\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s13143-022-00301-5","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

利用近30年ERA5全球再分析资料,采用复合方法识别了热带气旋诱发的β环流和罗斯比波列。为了提取与热带气旋周围的β环流和罗斯比波列有关的扰动,将扰动分解为三个不同的水平尺度,包括小尺度、中尺度和行星尺度。小、中比例尺扰动合成图显示出组织良好的罗斯比波列。波浪列的方向与热带气旋的平动方向有关,除了西西北方向的平动方向外,波浪列的方向也出现分裂。波列的波能沿波列轴传播,这是由波列内振幅随时间的变化推断出来的。波列呈微弱的向西向上倾斜,振幅随高度增加而增加,表明波能向上传播。从罗斯比波列中发现了一个偶极子环流单元,与理论和数值模型中描述的β环流非常相似。β环流的强度和方向随热带气旋的平动方向而变化,向西和向北平动时振幅最强和最弱。结果表明,与热带气旋的平动方向无关,滞后复合法得到的β环流方向随时间顺时针旋转。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Composite Analysis of the Beta-gyre and Rossby Wave Induced by Tropical Cyclones

Composite Analysis of the Beta-gyre and Rossby Wave Induced by Tropical Cyclones

Beta gyre and Rossby wave train induced by tropical cyclones were identified from the ERA5 global-reanalysis data of the recent 30 years using a composite method. To pick up the disturbances relevant to the beta gyre and Rossby wave train surrounding tropical cyclones, the disturbances were decomposed into three distinct horizontal scales including small, intermediate, and planetary-scale. Composite map of the disturbances containing small- and intermediate-scale showed a well-organized Rossby wave train. The orientation of wave train was found to depend on the translation direction of tropical cyclones, and also appeared to split into two orientations except for those translating in the west-northwestward direction. The wave energy of the wave train was shown to propagate along the wave train axis, which was inferred from the amplitude change with time within the wave train. The wave train shows a weak upward-westward tilt and increasing amplitude with height, implying the wave energy propagating upward. A dipole circulation cell, bearing a close resemblance to the beta gyre depicted in the theories and numerical models, was found from the Rossby wave train. The strength and orientation of the beta gyres were revealed to vary with the translation direction of the tropical cyclones, with the weakest and strongest amplitudes being found for the westward- and northward-translation cases, respectively. It was shown that the orientation of the beta gyre obtained by a lag-composite method rotates clockwise with time regardless of the translation direction of tropical cyclones.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asia-Pacific Journal of Atmospheric Sciences
Asia-Pacific Journal of Atmospheric Sciences 地学-气象与大气科学
CiteScore
5.50
自引率
4.30%
发文量
34
审稿时长
>12 weeks
期刊介绍: The Asia-Pacific Journal of Atmospheric Sciences (APJAS) is an international journal of the Korean Meteorological Society (KMS), published fully in English. It has started from 2008 by succeeding the KMS'' former journal, the Journal of the Korean Meteorological Society (JKMS), which published a total of 47 volumes as of 2011, in its time-honored tradition since 1965. Since 2008, the APJAS is included in the journal list of Thomson Reuters’ SCIE (Science Citation Index Expanded) and also in SCOPUS, the Elsevier Bibliographic Database, indicating the increased awareness and quality of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信