粘性不可压缩流体中任意形状刚体的运动:适位性和大时间行为

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Debayan Maity, Marius Tucsnak
{"title":"粘性不可压缩流体中任意形状刚体的运动:适位性和大时间行为","authors":"Debayan Maity,&nbsp;Marius Tucsnak","doi":"10.1007/s00021-023-00814-7","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the long-time behaviour of a coupled PDE–ODE system that describes the motion of a rigid body of arbitrary shape moving in a viscous incompressible fluid. We assume that the system formed by the rigid body and the fluid fills the entire space \n<span>\\(\\mathbb {R}^{3}.\\)</span> We extend in this way our previous results which were limited to the case when the rigid body was a ball. More precisely, we show that, under appropriate assumptions (in particular smallness ones) on the initial velocity field, the position of the rigid body converges to some final configuration as time goes to infinity. Finally, we show that our methodology can be applied in the case of several rigid bodies of arbitrary shapes moving in a viscous incompressible fluid.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Motion of Rigid Bodies of Arbitrary Shape in a Viscous Incompressible Fluid: Wellposedness and Large Time Behaviour\",\"authors\":\"Debayan Maity,&nbsp;Marius Tucsnak\",\"doi\":\"10.1007/s00021-023-00814-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate the long-time behaviour of a coupled PDE–ODE system that describes the motion of a rigid body of arbitrary shape moving in a viscous incompressible fluid. We assume that the system formed by the rigid body and the fluid fills the entire space \\n<span>\\\\(\\\\mathbb {R}^{3}.\\\\)</span> We extend in this way our previous results which were limited to the case when the rigid body was a ball. More precisely, we show that, under appropriate assumptions (in particular smallness ones) on the initial velocity field, the position of the rigid body converges to some final configuration as time goes to infinity. Finally, we show that our methodology can be applied in the case of several rigid bodies of arbitrary shapes moving in a viscous incompressible fluid.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00021-023-00814-7\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-023-00814-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

我们研究了耦合PDE-ODE系统的长期行为,该系统描述了在粘性不可压缩流体中运动的任意形状的刚体的运动。我们假设系统由刚体组成,流体充满整个空间\(\mathbb {R}^{3}.\)我们以这种方式扩展了以前的结果,这些结果仅限于刚体为球的情况。更准确地说,我们表明,在适当的假设(特别是小的假设)下,在初始速度场,刚体的位置收敛到一些最终构型随着时间趋于无穷。最后,我们证明了我们的方法可以应用于在粘性不可压缩流体中运动的任意形状的几个刚体的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Motion of Rigid Bodies of Arbitrary Shape in a Viscous Incompressible Fluid: Wellposedness and Large Time Behaviour

We investigate the long-time behaviour of a coupled PDE–ODE system that describes the motion of a rigid body of arbitrary shape moving in a viscous incompressible fluid. We assume that the system formed by the rigid body and the fluid fills the entire space \(\mathbb {R}^{3}.\) We extend in this way our previous results which were limited to the case when the rigid body was a ball. More precisely, we show that, under appropriate assumptions (in particular smallness ones) on the initial velocity field, the position of the rigid body converges to some final configuration as time goes to infinity. Finally, we show that our methodology can be applied in the case of several rigid bodies of arbitrary shapes moving in a viscous incompressible fluid.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信