针对基于RPL的物联网网络的潜在洪水版本号攻击

IF 1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
M. Rouissat, Mohammed Belkheir, Hichem Sid Ahmed Belkhira
{"title":"针对基于RPL的物联网网络的潜在洪水版本号攻击","authors":"M. Rouissat, Mohammed Belkheir, Hichem Sid Ahmed Belkhira","doi":"10.2478/jee-2022-0035","DOIUrl":null,"url":null,"abstract":"Abstract Routing protocol for low power and lossy networks (RPL) has been proposed for power, memory, and processing constrained devices. Owing to their constrained, RPL-based networks are exposed to a wide range of security attacks that mainly include control message tampering. In this paper we propose and study a modified version number attack, based on flooding the network by falsified incremented version numbers. The obtained results show that the modified attack led to an immense increase in the overhead, 1426%, compared with the attack-free case, and an increase of 182 % in the total energy consumption. When it comes to PDR a degradation to 4.7% has been recorded, affecting the reliability of the network. On the other hand, the latency also showed an increase from 0.24 s in the attack-free case to 0.89 s, which is mainly due to the high congestion created by the attack.","PeriodicalId":15661,"journal":{"name":"Journal of Electrical Engineering-elektrotechnicky Casopis","volume":"73 1","pages":"267 - 275"},"PeriodicalIF":1.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A potential flooding version number attack against RPL based IOT networks\",\"authors\":\"M. Rouissat, Mohammed Belkheir, Hichem Sid Ahmed Belkhira\",\"doi\":\"10.2478/jee-2022-0035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Routing protocol for low power and lossy networks (RPL) has been proposed for power, memory, and processing constrained devices. Owing to their constrained, RPL-based networks are exposed to a wide range of security attacks that mainly include control message tampering. In this paper we propose and study a modified version number attack, based on flooding the network by falsified incremented version numbers. The obtained results show that the modified attack led to an immense increase in the overhead, 1426%, compared with the attack-free case, and an increase of 182 % in the total energy consumption. When it comes to PDR a degradation to 4.7% has been recorded, affecting the reliability of the network. On the other hand, the latency also showed an increase from 0.24 s in the attack-free case to 0.89 s, which is mainly due to the high congestion created by the attack.\",\"PeriodicalId\":15661,\"journal\":{\"name\":\"Journal of Electrical Engineering-elektrotechnicky Casopis\",\"volume\":\"73 1\",\"pages\":\"267 - 275\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrical Engineering-elektrotechnicky Casopis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2478/jee-2022-0035\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Engineering-elektrotechnicky Casopis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/jee-2022-0035","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 3

摘要

摘要针对功耗、内存和处理受限的设备,提出了一种低功耗损耗网络路由协议(RPL)。由于自身的局限性,基于rpl的网络暴露在各种各样的安全攻击中,主要包括控制消息篡改。在本文中,我们提出并研究了一种修改版本号的攻击,该攻击基于伪造的增量版本号来淹没网络。结果表明,改进后的攻击使开销比无攻击时增加了1426%,总能耗增加了182%。当涉及到PDR时,有4.7%的降级记录,影响了网络的可靠性。另一方面,延迟也从无攻击情况下的0.24 s增加到0.89 s,这主要是由于攻击造成的高拥塞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A potential flooding version number attack against RPL based IOT networks
Abstract Routing protocol for low power and lossy networks (RPL) has been proposed for power, memory, and processing constrained devices. Owing to their constrained, RPL-based networks are exposed to a wide range of security attacks that mainly include control message tampering. In this paper we propose and study a modified version number attack, based on flooding the network by falsified incremented version numbers. The obtained results show that the modified attack led to an immense increase in the overhead, 1426%, compared with the attack-free case, and an increase of 182 % in the total energy consumption. When it comes to PDR a degradation to 4.7% has been recorded, affecting the reliability of the network. On the other hand, the latency also showed an increase from 0.24 s in the attack-free case to 0.89 s, which is mainly due to the high congestion created by the attack.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electrical Engineering-elektrotechnicky Casopis
Journal of Electrical Engineering-elektrotechnicky Casopis 工程技术-工程:电子与电气
CiteScore
1.70
自引率
12.50%
发文量
40
审稿时长
6-12 weeks
期刊介绍: The joint publication of the Slovak University of Technology, Faculty of Electrical Engineering and Information Technology, and of the Slovak Academy of Sciences, Institute of Electrical Engineering, is a wide-scope journal published bimonthly and comprising. -Automation and Control- Computer Engineering- Electronics and Microelectronics- Electro-physics and Electromagnetism- Material Science- Measurement and Metrology- Power Engineering and Energy Conversion- Signal Processing and Telecommunications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信