Zhimiao Zheng, Jingchao Xie, Pan Liang, Jiaping Liu
{"title":"滨海大气盐雾浓度测量技术及影响因素研究——以三亚为例","authors":"Zhimiao Zheng, Jingchao Xie, Pan Liang, Jiaping Liu","doi":"10.1007/s13143-022-00309-x","DOIUrl":null,"url":null,"abstract":"<div><h2>\nAbstract\n</h2><div><p>Corrosion of reinforced concrete in the high-salt atmospheric environment of coastal areas widely exists in practical coastal projects, which will reduce the durability of coastal buildings and metal equipment. In this study, the factors influencing coastal atmospheric salt fog concentration were studied by combining theoretical analysis and coastal measurements. First, a set of atmospheric sampling and processing methods for atmospheric salt fog particles was summarized and sorted. Through actual measurements in Sanya, the atmospheric sampling and processing method were verified, and more accurate coastal atmospheric salt fog concentration data were obtained. The average atmospheric salt fog concentration at the coast was 190 μg/m<sup>3</sup>, the maximum value was 343.18 μg/m<sup>3</sup>, and the minimum value was 48.49 μg/m<sup>3</sup>. Then, the influence of meteorological factors, such as temperature, humidity, and wind speed, on salt fog concentration was explored based on the measured data, and the functional relationship between various factors and salt fog concentration was fitted. Finally, a model of salt fog particles migrating inland driven by wind in the coastal atmosphere was deduced theoretically and verified by the measured data of atmospheric salt fog concentration at different sea distances. The results of this study provide a theoretical reference for the anti-corrosion properties of coastal buildings and metal equipment.</p></div></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"59 3","pages":"311 - 326"},"PeriodicalIF":2.2000,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on Measurement Technology and Influencing Factors of Atmospheric Salt Fog Concentration at the Seaside – A Case Study of Sanya, China\",\"authors\":\"Zhimiao Zheng, Jingchao Xie, Pan Liang, Jiaping Liu\",\"doi\":\"10.1007/s13143-022-00309-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h2>\\nAbstract\\n</h2><div><p>Corrosion of reinforced concrete in the high-salt atmospheric environment of coastal areas widely exists in practical coastal projects, which will reduce the durability of coastal buildings and metal equipment. In this study, the factors influencing coastal atmospheric salt fog concentration were studied by combining theoretical analysis and coastal measurements. First, a set of atmospheric sampling and processing methods for atmospheric salt fog particles was summarized and sorted. Through actual measurements in Sanya, the atmospheric sampling and processing method were verified, and more accurate coastal atmospheric salt fog concentration data were obtained. The average atmospheric salt fog concentration at the coast was 190 μg/m<sup>3</sup>, the maximum value was 343.18 μg/m<sup>3</sup>, and the minimum value was 48.49 μg/m<sup>3</sup>. Then, the influence of meteorological factors, such as temperature, humidity, and wind speed, on salt fog concentration was explored based on the measured data, and the functional relationship between various factors and salt fog concentration was fitted. Finally, a model of salt fog particles migrating inland driven by wind in the coastal atmosphere was deduced theoretically and verified by the measured data of atmospheric salt fog concentration at different sea distances. The results of this study provide a theoretical reference for the anti-corrosion properties of coastal buildings and metal equipment.</p></div></div>\",\"PeriodicalId\":8556,\"journal\":{\"name\":\"Asia-Pacific Journal of Atmospheric Sciences\",\"volume\":\"59 3\",\"pages\":\"311 - 326\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia-Pacific Journal of Atmospheric Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13143-022-00309-x\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s13143-022-00309-x","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Study on Measurement Technology and Influencing Factors of Atmospheric Salt Fog Concentration at the Seaside – A Case Study of Sanya, China
Abstract
Corrosion of reinforced concrete in the high-salt atmospheric environment of coastal areas widely exists in practical coastal projects, which will reduce the durability of coastal buildings and metal equipment. In this study, the factors influencing coastal atmospheric salt fog concentration were studied by combining theoretical analysis and coastal measurements. First, a set of atmospheric sampling and processing methods for atmospheric salt fog particles was summarized and sorted. Through actual measurements in Sanya, the atmospheric sampling and processing method were verified, and more accurate coastal atmospheric salt fog concentration data were obtained. The average atmospheric salt fog concentration at the coast was 190 μg/m3, the maximum value was 343.18 μg/m3, and the minimum value was 48.49 μg/m3. Then, the influence of meteorological factors, such as temperature, humidity, and wind speed, on salt fog concentration was explored based on the measured data, and the functional relationship between various factors and salt fog concentration was fitted. Finally, a model of salt fog particles migrating inland driven by wind in the coastal atmosphere was deduced theoretically and verified by the measured data of atmospheric salt fog concentration at different sea distances. The results of this study provide a theoretical reference for the anti-corrosion properties of coastal buildings and metal equipment.
期刊介绍:
The Asia-Pacific Journal of Atmospheric Sciences (APJAS) is an international journal of the Korean Meteorological Society (KMS), published fully in English. It has started from 2008 by succeeding the KMS'' former journal, the Journal of the Korean Meteorological Society (JKMS), which published a total of 47 volumes as of 2011, in its time-honored tradition since 1965. Since 2008, the APJAS is included in the journal list of Thomson Reuters’ SCIE (Science Citation Index Expanded) and also in SCOPUS, the Elsevier Bibliographic Database, indicating the increased awareness and quality of the journal.