为什么热力学熵和统计熵是两个不同的物理量

A. Paglietti
{"title":"为什么热力学熵和统计熵是两个不同的物理量","authors":"A. Paglietti","doi":"10.2174/1877946813666230622161503","DOIUrl":null,"url":null,"abstract":"\n\nHistorically, the coincidence of classical thermodynamic entropy and statistical entropy is based on an assumption (the so-called Boltzmann-Planck relation).\nThe study shows that the Boltzmann-Planck relation is not valid in general.\n\n\n\nThe study demonstrates that thermodynamic entropy is a physical entity distinct from statistical entropy.\n\n\n\nInitially, the entropy of ideal gases was examined and demonstrated to be independent of the gas volume. The ideal gas's true entropy was then expressed correctly.\n\n\n\nThe Boltzmann-Planck entropy equation is demonstrated to be incapable of describing the thermodynamic entropy of ideal gases.\n\n\n\nIn general, the Boltzmann-Planck entropy cannot be considered a statistical interpretation of the thermodynamic entropy. The two entropies represent two different physical quantities. The physical quantity that enters the second law of thermodynamics is the thermodynamic entropy, not the statistical entropy. \nThe study advocates for a fundamental rethinking of today's statistical understanding of thermodynamics.\n","PeriodicalId":89671,"journal":{"name":"Current physical chemistry","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Why Thermodynamic Entropy And Statistical Entropy Are Two Different Physical Quantities\",\"authors\":\"A. Paglietti\",\"doi\":\"10.2174/1877946813666230622161503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nHistorically, the coincidence of classical thermodynamic entropy and statistical entropy is based on an assumption (the so-called Boltzmann-Planck relation).\\nThe study shows that the Boltzmann-Planck relation is not valid in general.\\n\\n\\n\\nThe study demonstrates that thermodynamic entropy is a physical entity distinct from statistical entropy.\\n\\n\\n\\nInitially, the entropy of ideal gases was examined and demonstrated to be independent of the gas volume. The ideal gas's true entropy was then expressed correctly.\\n\\n\\n\\nThe Boltzmann-Planck entropy equation is demonstrated to be incapable of describing the thermodynamic entropy of ideal gases.\\n\\n\\n\\nIn general, the Boltzmann-Planck entropy cannot be considered a statistical interpretation of the thermodynamic entropy. The two entropies represent two different physical quantities. The physical quantity that enters the second law of thermodynamics is the thermodynamic entropy, not the statistical entropy. \\nThe study advocates for a fundamental rethinking of today's statistical understanding of thermodynamics.\\n\",\"PeriodicalId\":89671,\"journal\":{\"name\":\"Current physical chemistry\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current physical chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1877946813666230622161503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current physical chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1877946813666230622161503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从历史上看,经典热力学熵和统计熵的重合是基于一个假设(所谓的玻尔兹曼-普朗克关系)。研究表明,玻尔兹曼-普朗克关系在一般情况下是不成立的。研究表明,热力学熵是一个不同于统计熵的物理实体。最初,理想气体的熵被检验并证明与气体体积无关。然后,理想气体的真实熵被正确地表达出来。玻尔兹曼-普朗克熵方程被证明不能描述理想气体的热力学熵。一般来说,玻尔兹曼-普朗克熵不能被认为是热力学熵的统计解释。这两个熵代表两个不同的物理量。进入热力学第二定律的物理量是热力学熵,而不是统计熵。这项研究主张从根本上重新思考当今对热力学的统计理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Why Thermodynamic Entropy And Statistical Entropy Are Two Different Physical Quantities
Historically, the coincidence of classical thermodynamic entropy and statistical entropy is based on an assumption (the so-called Boltzmann-Planck relation). The study shows that the Boltzmann-Planck relation is not valid in general. The study demonstrates that thermodynamic entropy is a physical entity distinct from statistical entropy. Initially, the entropy of ideal gases was examined and demonstrated to be independent of the gas volume. The ideal gas's true entropy was then expressed correctly. The Boltzmann-Planck entropy equation is demonstrated to be incapable of describing the thermodynamic entropy of ideal gases. In general, the Boltzmann-Planck entropy cannot be considered a statistical interpretation of the thermodynamic entropy. The two entropies represent two different physical quantities. The physical quantity that enters the second law of thermodynamics is the thermodynamic entropy, not the statistical entropy. The study advocates for a fundamental rethinking of today's statistical understanding of thermodynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信