{"title":"旋翼气动控制与设计中主动襟翼控制参数分析","authors":"Runze Xia, Zhiyuan Hu, Yongjie Shi, Guohua Xu","doi":"10.1155/2023/8445145","DOIUrl":null,"url":null,"abstract":"Active rotor control of helicopters is the future development direction, and active flap control (AFC) is one of the most promising technologies. However, the numerical simulation of an AFC rotor is challenging. It is necessary to consider the fidelity of the local flow details while dealing with complex shapes and motions. Therefore, few simulations of the flow field and analyses of the influencing parameters have been conducted. In particular, there is a lack of aerodynamic design criteria and recommendations for the AFC rotor. Thus, a new overset assembly algorithm, an arbitrary multilevel moving grid transformation algorithm, and a solver for the unsteady Reynolds-averaged Navier-Stokes equations (URANS) are proposed to establish a suitable numerical method for AFC rotor simulation. The aerodynamic characteristics of the rotor and key influencing factors are systematically analyzed under different flow conditions and design and control parameters, and suggestions for the design of the AFC rotor are provided. The results show that the AFC significantly changes the load distribution of the rotor. The thrust loss of the rotor is approximately 1%, but the offset angle compensates for the loss. The control parameters show relatively consistent trends under different working conditions. The phase is the key control parameter, and the effect on the load is more pronounced when the control frequency is an integral multiple of the rotor’s natural load frequency. Increasing the chord length, span length, and deflection amplitude can also enhance the active control performance.","PeriodicalId":13748,"journal":{"name":"International Journal of Aerospace Engineering","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameter Analysis of Active Flap Control for Rotor Aerodynamic Control and Design\",\"authors\":\"Runze Xia, Zhiyuan Hu, Yongjie Shi, Guohua Xu\",\"doi\":\"10.1155/2023/8445145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Active rotor control of helicopters is the future development direction, and active flap control (AFC) is one of the most promising technologies. However, the numerical simulation of an AFC rotor is challenging. It is necessary to consider the fidelity of the local flow details while dealing with complex shapes and motions. Therefore, few simulations of the flow field and analyses of the influencing parameters have been conducted. In particular, there is a lack of aerodynamic design criteria and recommendations for the AFC rotor. Thus, a new overset assembly algorithm, an arbitrary multilevel moving grid transformation algorithm, and a solver for the unsteady Reynolds-averaged Navier-Stokes equations (URANS) are proposed to establish a suitable numerical method for AFC rotor simulation. The aerodynamic characteristics of the rotor and key influencing factors are systematically analyzed under different flow conditions and design and control parameters, and suggestions for the design of the AFC rotor are provided. The results show that the AFC significantly changes the load distribution of the rotor. The thrust loss of the rotor is approximately 1%, but the offset angle compensates for the loss. The control parameters show relatively consistent trends under different working conditions. The phase is the key control parameter, and the effect on the load is more pronounced when the control frequency is an integral multiple of the rotor’s natural load frequency. Increasing the chord length, span length, and deflection amplitude can also enhance the active control performance.\",\"PeriodicalId\":13748,\"journal\":{\"name\":\"International Journal of Aerospace Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Aerospace Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/8445145\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/8445145","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Parameter Analysis of Active Flap Control for Rotor Aerodynamic Control and Design
Active rotor control of helicopters is the future development direction, and active flap control (AFC) is one of the most promising technologies. However, the numerical simulation of an AFC rotor is challenging. It is necessary to consider the fidelity of the local flow details while dealing with complex shapes and motions. Therefore, few simulations of the flow field and analyses of the influencing parameters have been conducted. In particular, there is a lack of aerodynamic design criteria and recommendations for the AFC rotor. Thus, a new overset assembly algorithm, an arbitrary multilevel moving grid transformation algorithm, and a solver for the unsteady Reynolds-averaged Navier-Stokes equations (URANS) are proposed to establish a suitable numerical method for AFC rotor simulation. The aerodynamic characteristics of the rotor and key influencing factors are systematically analyzed under different flow conditions and design and control parameters, and suggestions for the design of the AFC rotor are provided. The results show that the AFC significantly changes the load distribution of the rotor. The thrust loss of the rotor is approximately 1%, but the offset angle compensates for the loss. The control parameters show relatively consistent trends under different working conditions. The phase is the key control parameter, and the effect on the load is more pronounced when the control frequency is an integral multiple of the rotor’s natural load frequency. Increasing the chord length, span length, and deflection amplitude can also enhance the active control performance.
期刊介绍:
International Journal of Aerospace Engineering aims to serve the international aerospace engineering community through dissemination of scientific knowledge on practical engineering and design methodologies pertaining to aircraft and space vehicles.
Original unpublished manuscripts are solicited on all areas of aerospace engineering including but not limited to:
-Mechanics of materials and structures-
Aerodynamics and fluid mechanics-
Dynamics and control-
Aeroacoustics-
Aeroelasticity-
Propulsion and combustion-
Avionics and systems-
Flight simulation and mechanics-
Unmanned air vehicles (UAVs).
Review articles on any of the above topics are also welcome.