反交换性和n格式

IF 1.1 4区 化学 Q4 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
Brice Réné Amougou Mbarga
{"title":"反交换性和n格式","authors":"Brice Réné Amougou Mbarga","doi":"10.34198/EJMS.6121.175186","DOIUrl":null,"url":null,"abstract":"Abstract The purpose of this paper is two-fold. A first and more concrete aim is to give new characterizations of equivalence distributive Goursat categories (which extend 3-permutable varieties) through variations of the little Pappian Theorem involving reflexive and positive relations. A second and more abstract aim is to show that every finitely complete category E satisfying the n-scheme is locally anticommutative.","PeriodicalId":12007,"journal":{"name":"European Journal of Mass Spectrometry","volume":"1 1","pages":"175-186"},"PeriodicalIF":1.1000,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Anticommutativity and n-schemes\",\"authors\":\"Brice Réné Amougou Mbarga\",\"doi\":\"10.34198/EJMS.6121.175186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The purpose of this paper is two-fold. A first and more concrete aim is to give new characterizations of equivalence distributive Goursat categories (which extend 3-permutable varieties) through variations of the little Pappian Theorem involving reflexive and positive relations. A second and more abstract aim is to show that every finitely complete category E satisfying the n-scheme is locally anticommutative.\",\"PeriodicalId\":12007,\"journal\":{\"name\":\"European Journal of Mass Spectrometry\",\"volume\":\"1 1\",\"pages\":\"175-186\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Mass Spectrometry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.34198/EJMS.6121.175186\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.34198/EJMS.6121.175186","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 3

摘要

摘要本文的目的是双重的。第一个也是更具体的目的是通过涉及自反关系和正关系的小Pappian定理的变体,给出等价分配Goursat范畴(扩展了3-可换变体)的新刻画。第二个更抽象的目的是证明满足n方案的每个有限完全范畴E都是局部反交换的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anticommutativity and n-schemes
Abstract The purpose of this paper is two-fold. A first and more concrete aim is to give new characterizations of equivalence distributive Goursat categories (which extend 3-permutable varieties) through variations of the little Pappian Theorem involving reflexive and positive relations. A second and more abstract aim is to show that every finitely complete category E satisfying the n-scheme is locally anticommutative.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
7.70%
发文量
16
审稿时长
>12 weeks
期刊介绍: JMS - European Journal of Mass Spectrometry, is a peer-reviewed journal, devoted to the publication of innovative research in mass spectrometry. Articles in the journal come from proteomics, metabolomics, petroleomics and other areas developing under the umbrella of the “omic revolution”.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信