{"title":"茶:一种保存三醋酸纤维素薄膜的吸附剂","authors":"Julianne Bell, M. Newnham, P. Nel","doi":"10.1080/10344233.2017.1402413","DOIUrl":null,"url":null,"abstract":"Cellulose triacetate (CTA) film, the main film base of the Twentieth Century, is inherently unstable, affected by autocatalytic deterioration through hydrolysis. The release of, and subsequent exposure to, acetic acid known as ‘vinegar syndrome’ accelerates deterioration, placing all cellulose acetate materials at risk or actively deteriorating. Preservation techniques rely on cold storage to slow deterioration or microenvironments with adsorbent materials to remove corrosives and/or pollutants. However, commercially available adsorbents can be expensive and difficult to access. This research investigated the potential for tea and tea waste to act as an alternative, low cost, accessible adsorbent for the preservation of CTA film. Adsorption capabilities of various tea varieties and treatments were compared with activated charcoal, silica gel and molecular sieves. Testing established tea as an effective adsorbent of water and acetic acid vapour, with an aversion to adsorption of the plasticiser dibutyl-phthalate. Use of tea waste also involves additional cost, sustainability and accessibility benefits along with lessened corrosive potential. These findings support tea as a potentially viable alternative adsorbent for the preservation of CTA film, requiring further research into optimum application systems.","PeriodicalId":7847,"journal":{"name":"AICCM Bulletin","volume":"38 1","pages":"103 - 113"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10344233.2017.1402413","citationCount":"1","resultStr":"{\"title\":\"Tea: An Alternative Adsorbent for the Preservation of Cellulose Triacetate Film\",\"authors\":\"Julianne Bell, M. Newnham, P. Nel\",\"doi\":\"10.1080/10344233.2017.1402413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cellulose triacetate (CTA) film, the main film base of the Twentieth Century, is inherently unstable, affected by autocatalytic deterioration through hydrolysis. The release of, and subsequent exposure to, acetic acid known as ‘vinegar syndrome’ accelerates deterioration, placing all cellulose acetate materials at risk or actively deteriorating. Preservation techniques rely on cold storage to slow deterioration or microenvironments with adsorbent materials to remove corrosives and/or pollutants. However, commercially available adsorbents can be expensive and difficult to access. This research investigated the potential for tea and tea waste to act as an alternative, low cost, accessible adsorbent for the preservation of CTA film. Adsorption capabilities of various tea varieties and treatments were compared with activated charcoal, silica gel and molecular sieves. Testing established tea as an effective adsorbent of water and acetic acid vapour, with an aversion to adsorption of the plasticiser dibutyl-phthalate. Use of tea waste also involves additional cost, sustainability and accessibility benefits along with lessened corrosive potential. These findings support tea as a potentially viable alternative adsorbent for the preservation of CTA film, requiring further research into optimum application systems.\",\"PeriodicalId\":7847,\"journal\":{\"name\":\"AICCM Bulletin\",\"volume\":\"38 1\",\"pages\":\"103 - 113\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/10344233.2017.1402413\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AICCM Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10344233.2017.1402413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AICCM Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10344233.2017.1402413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Arts and Humanities","Score":null,"Total":0}
Tea: An Alternative Adsorbent for the Preservation of Cellulose Triacetate Film
Cellulose triacetate (CTA) film, the main film base of the Twentieth Century, is inherently unstable, affected by autocatalytic deterioration through hydrolysis. The release of, and subsequent exposure to, acetic acid known as ‘vinegar syndrome’ accelerates deterioration, placing all cellulose acetate materials at risk or actively deteriorating. Preservation techniques rely on cold storage to slow deterioration or microenvironments with adsorbent materials to remove corrosives and/or pollutants. However, commercially available adsorbents can be expensive and difficult to access. This research investigated the potential for tea and tea waste to act as an alternative, low cost, accessible adsorbent for the preservation of CTA film. Adsorption capabilities of various tea varieties and treatments were compared with activated charcoal, silica gel and molecular sieves. Testing established tea as an effective adsorbent of water and acetic acid vapour, with an aversion to adsorption of the plasticiser dibutyl-phthalate. Use of tea waste also involves additional cost, sustainability and accessibility benefits along with lessened corrosive potential. These findings support tea as a potentially viable alternative adsorbent for the preservation of CTA film, requiring further research into optimum application systems.