整合数据评估全球健康大挑战

IF 0.2 Q4 SOCIAL SCIENCES, INTERDISCIPLINARY
Blen M. Biru, Andrea Taylor, Sowmya Rajan, Kathryn Crissman, O. Ogbuoji, Fernando Fernholz, Siddharth Dixit, Mina Shahid, Pratik A Doshi, A. Finnegan, K. Udayakumar, J. Baumgartner
{"title":"整合数据评估全球健康大挑战","authors":"Blen M. Biru, Andrea Taylor, Sowmya Rajan, Kathryn Crissman, O. Ogbuoji, Fernando Fernholz, Siddharth Dixit, Mina Shahid, Pratik A Doshi, A. Finnegan, K. Udayakumar, J. Baumgartner","doi":"10.3138/cjpe.71259","DOIUrl":null,"url":null,"abstract":"Th is article describes the integrated, mixed methods (MM) design used to evaluate the Saving Lives at Birth (SL@B) program. SL@B is a multi-stakeholder, donor-supported global health initiative to tackle maternal and neonatal mortality via innovation. Since SL@B’s launch in 2011, the program has supported 116 innovationsthrough 147 awards around the globe. The evaluation for this large and complex program included a largely retrospective MM design aligned with principles of evaluating complexity. This paper highlights these MM evaluation strategies and integration dimensions employed to complete the SL@B evaluation that could inform future evaluations of portfolio-level global health programs.","PeriodicalId":43924,"journal":{"name":"Canadian Journal of Program Evaluation","volume":"1 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating Data to Evaluate a Global Health Grand Challenge\",\"authors\":\"Blen M. Biru, Andrea Taylor, Sowmya Rajan, Kathryn Crissman, O. Ogbuoji, Fernando Fernholz, Siddharth Dixit, Mina Shahid, Pratik A Doshi, A. Finnegan, K. Udayakumar, J. Baumgartner\",\"doi\":\"10.3138/cjpe.71259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Th is article describes the integrated, mixed methods (MM) design used to evaluate the Saving Lives at Birth (SL@B) program. SL@B is a multi-stakeholder, donor-supported global health initiative to tackle maternal and neonatal mortality via innovation. Since SL@B’s launch in 2011, the program has supported 116 innovationsthrough 147 awards around the globe. The evaluation for this large and complex program included a largely retrospective MM design aligned with principles of evaluating complexity. This paper highlights these MM evaluation strategies and integration dimensions employed to complete the SL@B evaluation that could inform future evaluations of portfolio-level global health programs.\",\"PeriodicalId\":43924,\"journal\":{\"name\":\"Canadian Journal of Program Evaluation\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Program Evaluation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3138/cjpe.71259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"SOCIAL SCIENCES, INTERDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Program Evaluation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3138/cjpe.71259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

这篇文章描述了用于评估出生时拯救生命的综合、混合方法(MM)设计(SL@B)程序。SL@B是一个多方利益攸关方、捐助者支持的全球卫生倡议,旨在通过创新解决孕产妇和新生儿死亡率问题。自从SL@B自2011年启动以来,该项目已在全球范围内通过147个奖项支持了116项创新。这个大型复杂项目的评估包括一个很大程度上符合评估复杂性原则的回顾性MM设计。本文重点介绍了这些MM评估策略和用于完成SL@B评估,可以为投资组合级别的全球卫生项目的未来评估提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating Data to Evaluate a Global Health Grand Challenge
Th is article describes the integrated, mixed methods (MM) design used to evaluate the Saving Lives at Birth (SL@B) program. SL@B is a multi-stakeholder, donor-supported global health initiative to tackle maternal and neonatal mortality via innovation. Since SL@B’s launch in 2011, the program has supported 116 innovationsthrough 147 awards around the globe. The evaluation for this large and complex program included a largely retrospective MM design aligned with principles of evaluating complexity. This paper highlights these MM evaluation strategies and integration dimensions employed to complete the SL@B evaluation that could inform future evaluations of portfolio-level global health programs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Canadian Journal of Program Evaluation
Canadian Journal of Program Evaluation SOCIAL SCIENCES, INTERDISCIPLINARY-
CiteScore
1.60
自引率
25.00%
发文量
32
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信