一类三维Brinkman-Forchheimer方程在poincar无界区域上的全局吸引子的存在性

Q3 Multidisciplinary
Xueli Song, Shuang Xu, Baoming Qiao
{"title":"一类三维Brinkman-Forchheimer方程在poincar<s:1>无界区域上的全局吸引子的存在性","authors":"Xueli Song, Shuang Xu, Baoming Qiao","doi":"10.1051/wujns/2023284282","DOIUrl":null,"url":null,"abstract":"In this paper, we study the existence of global attractor of a class of three-dimensional Brinkman-Forchheimer equation in some unbounded domains which satisfies Poincaré inequality. We use the tail estimation method to establish the asymptotic compactness of the solution operator and then prove the existence of the global attractor in [see formula in PDF].","PeriodicalId":23976,"journal":{"name":"Wuhan University Journal of Natural Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of Global Attractor for a 3D Brinkman-Forchheimer Equfation in Some Poincaré Unbounded Domains\",\"authors\":\"Xueli Song, Shuang Xu, Baoming Qiao\",\"doi\":\"10.1051/wujns/2023284282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the existence of global attractor of a class of three-dimensional Brinkman-Forchheimer equation in some unbounded domains which satisfies Poincaré inequality. We use the tail estimation method to establish the asymptotic compactness of the solution operator and then prove the existence of the global attractor in [see formula in PDF].\",\"PeriodicalId\":23976,\"journal\":{\"name\":\"Wuhan University Journal of Natural Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wuhan University Journal of Natural Sciences\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1051/wujns/2023284282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wuhan University Journal of Natural Sciences","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1051/wujns/2023284282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类满足Poincaré不等式的三维Brinkman-Forchheimer方程在某些无界域中全局吸引子的存在性。我们使用尾部估计方法来建立解算子的渐近紧性,然后在[见PDF中的公式]中证明全局吸引子的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of Global Attractor for a 3D Brinkman-Forchheimer Equfation in Some Poincaré Unbounded Domains
In this paper, we study the existence of global attractor of a class of three-dimensional Brinkman-Forchheimer equation in some unbounded domains which satisfies Poincaré inequality. We use the tail estimation method to establish the asymptotic compactness of the solution operator and then prove the existence of the global attractor in [see formula in PDF].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wuhan University Journal of Natural Sciences
Wuhan University Journal of Natural Sciences Multidisciplinary-Multidisciplinary
CiteScore
0.40
自引率
0.00%
发文量
2485
期刊介绍: Wuhan University Journal of Natural Sciences aims to promote rapid communication and exchange between the World and Wuhan University, as well as other Chinese universities and academic institutions. It mainly reflects the latest advances being made in many disciplines of scientific research in Chinese universities and academic institutions. The journal also publishes papers presented at conferences in China and abroad. The multi-disciplinary nature of Wuhan University Journal of Natural Sciences is apparent in the wide range of articles from leading Chinese scholars. This journal also aims to introduce Chinese academic achievements to the world community, by demonstrating the significance of Chinese scientific investigations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信