Hongxiang Wang, Jingjing Zheng, Xiaolei Sun, Yong Luo
{"title":"CoCrMo、Ti6Al4V和Ti15Mo合金金属植入材料的摩擦学机制和机电性能","authors":"Hongxiang Wang, Jingjing Zheng, Xiaolei Sun, Yong Luo","doi":"10.1049/bsb2.12031","DOIUrl":null,"url":null,"abstract":"<p>Corrosion and wear play significant roles in the aseptic loosening of artificial hip joints for the long-term service. In this present study, tribo-corrosion tests were carried out through a reciprocating ball-on-plate system to evaluate the corrosion and wear properties of CoCrMo, Ti6Al4V and Ti15Mo alloys in a simulated body fluid (SBF) solution. It was found that the tribo-corrosion behaviours of CoCrMo/Al<sub>2</sub>O<sub>3</sub> and Ti15Mo/Al<sub>2</sub>O<sub>3</sub> systems had significant wear-corrosion synergistic interaction, and wear-induced corrosion was dominant. For Ti6Al4V/Al<sub>2</sub>O<sub>3</sub> systems, their wear mechanism under SBF lubrication was a combination of abrasive, adhesive and fatigue wear. While the wear mechanism of the Ti15Mo/Al<sub>2</sub>O<sub>3</sub> system under synergistic interaction was a combination of abrasive and adhesive wear. Finally, it was suggested that the Ti15Mo alloy would be the better alternative for metal implant applications compared with the CoCrMo alloy for the consideration of both wear and potential poisonous ions such as Co(III) and Cr(VI).</p>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"8 1","pages":"44-51"},"PeriodicalIF":1.6000,"publicationDate":"2022-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.12031","citationCount":"3","resultStr":"{\"title\":\"Tribo-corrosion mechanisms and electromechanical behaviours for metal implants materials of CoCrMo, Ti6Al4V and Ti15Mo alloys\",\"authors\":\"Hongxiang Wang, Jingjing Zheng, Xiaolei Sun, Yong Luo\",\"doi\":\"10.1049/bsb2.12031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Corrosion and wear play significant roles in the aseptic loosening of artificial hip joints for the long-term service. In this present study, tribo-corrosion tests were carried out through a reciprocating ball-on-plate system to evaluate the corrosion and wear properties of CoCrMo, Ti6Al4V and Ti15Mo alloys in a simulated body fluid (SBF) solution. It was found that the tribo-corrosion behaviours of CoCrMo/Al<sub>2</sub>O<sub>3</sub> and Ti15Mo/Al<sub>2</sub>O<sub>3</sub> systems had significant wear-corrosion synergistic interaction, and wear-induced corrosion was dominant. For Ti6Al4V/Al<sub>2</sub>O<sub>3</sub> systems, their wear mechanism under SBF lubrication was a combination of abrasive, adhesive and fatigue wear. While the wear mechanism of the Ti15Mo/Al<sub>2</sub>O<sub>3</sub> system under synergistic interaction was a combination of abrasive and adhesive wear. Finally, it was suggested that the Ti15Mo alloy would be the better alternative for metal implant applications compared with the CoCrMo alloy for the consideration of both wear and potential poisonous ions such as Co(III) and Cr(VI).</p>\",\"PeriodicalId\":52235,\"journal\":{\"name\":\"Biosurface and Biotribology\",\"volume\":\"8 1\",\"pages\":\"44-51\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.12031\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosurface and Biotribology\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/bsb2.12031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosurface and Biotribology","FirstCategoryId":"1087","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/bsb2.12031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Tribo-corrosion mechanisms and electromechanical behaviours for metal implants materials of CoCrMo, Ti6Al4V and Ti15Mo alloys
Corrosion and wear play significant roles in the aseptic loosening of artificial hip joints for the long-term service. In this present study, tribo-corrosion tests were carried out through a reciprocating ball-on-plate system to evaluate the corrosion and wear properties of CoCrMo, Ti6Al4V and Ti15Mo alloys in a simulated body fluid (SBF) solution. It was found that the tribo-corrosion behaviours of CoCrMo/Al2O3 and Ti15Mo/Al2O3 systems had significant wear-corrosion synergistic interaction, and wear-induced corrosion was dominant. For Ti6Al4V/Al2O3 systems, their wear mechanism under SBF lubrication was a combination of abrasive, adhesive and fatigue wear. While the wear mechanism of the Ti15Mo/Al2O3 system under synergistic interaction was a combination of abrasive and adhesive wear. Finally, it was suggested that the Ti15Mo alloy would be the better alternative for metal implant applications compared with the CoCrMo alloy for the consideration of both wear and potential poisonous ions such as Co(III) and Cr(VI).