等变连接𝐾-theory

IF 0.9 1区 数学 Q2 MATHEMATICS
N. Karpenko, A. Merkurjev
{"title":"等变连接𝐾-theory","authors":"N. Karpenko, A. Merkurjev","doi":"10.1090/jag/773","DOIUrl":null,"url":null,"abstract":"For separated schemes of finite type over a field with an action of an affine group scheme of finite type, we construct the bi-graded equivariant connective \n\n \n K\n K\n \n\n-theory mapping to the equivariant \n\n \n K\n K\n \n\n-homology of Guillot and the equivariant algebraic \n\n \n K\n K\n \n\n-theory of Thomason. It has all the standard basic properties as the homotopy invariance and localization. We also get the equivariant version of the Brown-Gersten-Quillen spectral sequence and study its convergence.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Equivariant connective 𝐾-theory\",\"authors\":\"N. Karpenko, A. Merkurjev\",\"doi\":\"10.1090/jag/773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For separated schemes of finite type over a field with an action of an affine group scheme of finite type, we construct the bi-graded equivariant connective \\n\\n \\n K\\n K\\n \\n\\n-theory mapping to the equivariant \\n\\n \\n K\\n K\\n \\n\\n-homology of Guillot and the equivariant algebraic \\n\\n \\n K\\n K\\n \\n\\n-theory of Thomason. It has all the standard basic properties as the homotopy invariance and localization. We also get the equivariant version of the Brown-Gersten-Quillen spectral sequence and study its convergence.\",\"PeriodicalId\":54887,\"journal\":{\"name\":\"Journal of Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jag/773\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/773","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

对于具有有限型仿射群方案作用的域上的有限型分离方案,构造了到Guillot的等变K -同调的双阶等变连接K -理论映射和Thomason的等变代数K -理论。它具有同伦不变性和局域性等所有标准的基本性质。得到了Brown-Gersten-Quillen谱序列的等变版本,并研究了它的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Equivariant connective 𝐾-theory
For separated schemes of finite type over a field with an action of an affine group scheme of finite type, we construct the bi-graded equivariant connective K K -theory mapping to the equivariant K K -homology of Guillot and the equivariant algebraic K K -theory of Thomason. It has all the standard basic properties as the homotopy invariance and localization. We also get the equivariant version of the Brown-Gersten-Quillen spectral sequence and study its convergence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
5.60%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology. This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信