以非特殊因子曲线模形式出现的𝓜2,2的二元模型

IF 0.5 4区 数学 Q3 MATHEMATICS
Drew Johnson, A. Polishchuk
{"title":"以非特殊因子曲线模形式出现的𝓜2,2的二元模型","authors":"Drew Johnson, A. Polishchuk","doi":"10.1515/advgeom-2020-0026","DOIUrl":null,"url":null,"abstract":"Abstract We study birational projective models of 𝓜2,2 obtained from the moduli space of curves with nonspecial divisors. We describe geometrically which singular curves appear in these models and show that one of them is obtained by blowing down the Weierstrass divisor in the moduli stack of 𝓩-stable curves 𝓜2,2(𝓩) defined by Smyth. As a corollary, we prove projectivity of the coarse moduli space M2,2(𝓩).","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/advgeom-2020-0026","citationCount":"2","resultStr":"{\"title\":\"Birational models of 𝓜2,2 arising as moduli of curves with nonspecial divisors\",\"authors\":\"Drew Johnson, A. Polishchuk\",\"doi\":\"10.1515/advgeom-2020-0026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study birational projective models of 𝓜2,2 obtained from the moduli space of curves with nonspecial divisors. We describe geometrically which singular curves appear in these models and show that one of them is obtained by blowing down the Weierstrass divisor in the moduli stack of 𝓩-stable curves 𝓜2,2(𝓩) defined by Smyth. As a corollary, we prove projectivity of the coarse moduli space M2,2(𝓩).\",\"PeriodicalId\":7335,\"journal\":{\"name\":\"Advances in Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/advgeom-2020-0026\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/advgeom-2020-0026\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2020-0026","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要我们研究的是𝓜从具有非特殊除数的曲线的模量空间得到的2,2。我们在几何上描述了这些模型中出现的奇异曲线,并表明其中一条奇异曲线是通过吹掉模量堆栈中的Weierstrass因子而获得的𝓩-稳定曲线𝓜2,2(𝓩) 由Smyth定义。作为推论,我们证明了粗模空间M2,2的投影性(𝓩).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Birational models of 𝓜2,2 arising as moduli of curves with nonspecial divisors
Abstract We study birational projective models of 𝓜2,2 obtained from the moduli space of curves with nonspecial divisors. We describe geometrically which singular curves appear in these models and show that one of them is obtained by blowing down the Weierstrass divisor in the moduli stack of 𝓩-stable curves 𝓜2,2(𝓩) defined by Smyth. As a corollary, we prove projectivity of the coarse moduli space M2,2(𝓩).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Geometry
Advances in Geometry 数学-数学
CiteScore
1.00
自引率
0.00%
发文量
31
审稿时长
>12 weeks
期刊介绍: Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信