尾相关下风险值的渐近子可加性/超可加性

IF 1.6 3区 经济学 Q3 BUSINESS, FINANCE
Wenhao Zhu, Lujun Li, Jingping Yang, Jiehua Xie, Liulei Sun
{"title":"尾相关下风险值的渐近子可加性/超可加性","authors":"Wenhao Zhu,&nbsp;Lujun Li,&nbsp;Jingping Yang,&nbsp;Jiehua Xie,&nbsp;Liulei Sun","doi":"10.1111/mafi.12393","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a new method for discussing the asymptotic subadditivity/superadditivity of Value-at-Risk (VaR) for multiple risks. We consider the asymptotic subadditivity and superadditivity properties of VaR for multiple risks whose copula admits a stable tail dependence function (STDF). For the purpose, a marginal region is defined by the marginal distributions of the multiple risks, and a stochastic order named tail concave order is presented for comparing individual tail risks. We prove that asymptotic subadditivity of VaR holds when individual risks are smaller than regularly varying (RV) random variables with index −1 under the tail concave order. We also provide sufficient conditions for VaR being asymptotically superadditive. For two multiple risks sharing the same copula function and satisfying the tail concave order, a comparison result on the asymptotic subadditivity/superadditivity of VaR is given. Asymptotic diversification ratios for RV and log regularly varying (LRV) margins with specific copula structures are obtained. Empirical analysis on financial data is provided for highlighting our results.</p>","PeriodicalId":49867,"journal":{"name":"Mathematical Finance","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic subadditivity/superadditivity of Value-at-Risk under tail dependence\",\"authors\":\"Wenhao Zhu,&nbsp;Lujun Li,&nbsp;Jingping Yang,&nbsp;Jiehua Xie,&nbsp;Liulei Sun\",\"doi\":\"10.1111/mafi.12393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents a new method for discussing the asymptotic subadditivity/superadditivity of Value-at-Risk (VaR) for multiple risks. We consider the asymptotic subadditivity and superadditivity properties of VaR for multiple risks whose copula admits a stable tail dependence function (STDF). For the purpose, a marginal region is defined by the marginal distributions of the multiple risks, and a stochastic order named tail concave order is presented for comparing individual tail risks. We prove that asymptotic subadditivity of VaR holds when individual risks are smaller than regularly varying (RV) random variables with index −1 under the tail concave order. We also provide sufficient conditions for VaR being asymptotically superadditive. For two multiple risks sharing the same copula function and satisfying the tail concave order, a comparison result on the asymptotic subadditivity/superadditivity of VaR is given. Asymptotic diversification ratios for RV and log regularly varying (LRV) margins with specific copula structures are obtained. Empirical analysis on financial data is provided for highlighting our results.</p>\",\"PeriodicalId\":49867,\"journal\":{\"name\":\"Mathematical Finance\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/mafi.12393\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Finance","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mafi.12393","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的方法来讨论多重风险下风险值(VaR)的渐近次可加性/超可加性。对于copula允许稳定尾部依赖函数(STDF)的多个风险,我们考虑了VaR的渐近次可加性和超可加性性质。为此,由多个风险的边际分布定义了一个边际区域,并提出了一个名为尾部凹阶的随机阶,用于比较单个尾部风险。我们证明了当个体风险小于尾凹阶下指数为−1的规则变化(RV)随机变量时,VaR的渐近次可加性成立。我们还提供了VaR渐近超加性的充分条件。对于具有相同copula函数且满足尾凹阶的两个多重风险,给出了VaR的渐近次可加性/超可加性的比较结果。获得了具有特定copula结构的RV和对数规则变化(LRV)裕度的渐近多样化比率。提供了对财务数据的实证分析,以突出我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic subadditivity/superadditivity of Value-at-Risk under tail dependence

This paper presents a new method for discussing the asymptotic subadditivity/superadditivity of Value-at-Risk (VaR) for multiple risks. We consider the asymptotic subadditivity and superadditivity properties of VaR for multiple risks whose copula admits a stable tail dependence function (STDF). For the purpose, a marginal region is defined by the marginal distributions of the multiple risks, and a stochastic order named tail concave order is presented for comparing individual tail risks. We prove that asymptotic subadditivity of VaR holds when individual risks are smaller than regularly varying (RV) random variables with index −1 under the tail concave order. We also provide sufficient conditions for VaR being asymptotically superadditive. For two multiple risks sharing the same copula function and satisfying the tail concave order, a comparison result on the asymptotic subadditivity/superadditivity of VaR is given. Asymptotic diversification ratios for RV and log regularly varying (LRV) margins with specific copula structures are obtained. Empirical analysis on financial data is provided for highlighting our results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Finance
Mathematical Finance 数学-数学跨学科应用
CiteScore
4.10
自引率
6.20%
发文量
27
审稿时长
>12 weeks
期刊介绍: Mathematical Finance seeks to publish original research articles focused on the development and application of novel mathematical and statistical methods for the analysis of financial problems. The journal welcomes contributions on new statistical methods for the analysis of financial problems. Empirical results will be appropriate to the extent that they illustrate a statistical technique, validate a model or provide insight into a financial problem. Papers whose main contribution rests on empirical results derived with standard approaches will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信