{"title":"基于有限元分析的宽底轮胎成型工艺及设计优化","authors":"Haichao Zhou, Guolin Wang, Wang Yuming","doi":"10.2346/TIRE.18.460405","DOIUrl":null,"url":null,"abstract":"\n The wide-base tire is a relatively new design that originated to replace dual tires because of its potential for improved performance. However, during the construction process, the wide-base tire is more likely to experience tread deformation and uneven stress distribution. The goal of this study is to incorporate numeric techniques for the construction and design optimization of a wide-base, heavy vehicle, pneumatic tire. First, four conditions of the tire (385/55R22.5)–building process, including gluing of components on the main drum, gluing of components on the auxiliary drum, green tire, and finalizing the capsule vulcanizing machine, were simulated using finite element analysis. Second, to solve the difference in the tire's (435/50R19.5) material distribution between the real manufactured structure and the theoretical structure, the curved surface drum-building method and the parameters of the curved surface drum were determined by tire construction simulation. In this article, we present the method for collecting tire material, the measurement process, the analysis method, some general results, and statistics on the wide-base tire. Finally, validation of results of the simulation and measurement are given.","PeriodicalId":44601,"journal":{"name":"Tire Science and Technology","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2018-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Wide-Base Tire-Building Process and Design Optimization Using Finite Element Analysis\",\"authors\":\"Haichao Zhou, Guolin Wang, Wang Yuming\",\"doi\":\"10.2346/TIRE.18.460405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The wide-base tire is a relatively new design that originated to replace dual tires because of its potential for improved performance. However, during the construction process, the wide-base tire is more likely to experience tread deformation and uneven stress distribution. The goal of this study is to incorporate numeric techniques for the construction and design optimization of a wide-base, heavy vehicle, pneumatic tire. First, four conditions of the tire (385/55R22.5)–building process, including gluing of components on the main drum, gluing of components on the auxiliary drum, green tire, and finalizing the capsule vulcanizing machine, were simulated using finite element analysis. Second, to solve the difference in the tire's (435/50R19.5) material distribution between the real manufactured structure and the theoretical structure, the curved surface drum-building method and the parameters of the curved surface drum were determined by tire construction simulation. In this article, we present the method for collecting tire material, the measurement process, the analysis method, some general results, and statistics on the wide-base tire. Finally, validation of results of the simulation and measurement are given.\",\"PeriodicalId\":44601,\"journal\":{\"name\":\"Tire Science and Technology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2018-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tire Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2346/TIRE.18.460405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tire Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2346/TIRE.18.460405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Wide-Base Tire-Building Process and Design Optimization Using Finite Element Analysis
The wide-base tire is a relatively new design that originated to replace dual tires because of its potential for improved performance. However, during the construction process, the wide-base tire is more likely to experience tread deformation and uneven stress distribution. The goal of this study is to incorporate numeric techniques for the construction and design optimization of a wide-base, heavy vehicle, pneumatic tire. First, four conditions of the tire (385/55R22.5)–building process, including gluing of components on the main drum, gluing of components on the auxiliary drum, green tire, and finalizing the capsule vulcanizing machine, were simulated using finite element analysis. Second, to solve the difference in the tire's (435/50R19.5) material distribution between the real manufactured structure and the theoretical structure, the curved surface drum-building method and the parameters of the curved surface drum were determined by tire construction simulation. In this article, we present the method for collecting tire material, the measurement process, the analysis method, some general results, and statistics on the wide-base tire. Finally, validation of results of the simulation and measurement are given.
期刊介绍:
Tire Science and Technology is the world"s leading technical journal dedicated to tires. The Editor publishes original contributions that address the development and application of experimental, analytical, or computational science in which the tire figures prominently. Review papers may also be published. The journal aims to assure its readers authoritative, critically reviewed articles and the authors accessibility of their work in the permanent literature. The journal is published quarterly by the Tire Society, Inc., an Ohio not-for-profit corporation whose objective is to increase and disseminate knowledge of the science and technology of tires.