由Riesz-Feller算子正则化的守恒律的大时间行为:次临界情况

IF 0.4 4区 数学 Q4 MATHEMATICS
C. M. Cuesta, Xuban Diez
{"title":"由Riesz-Feller算子正则化的守恒律的大时间行为:次临界情况","authors":"C. M. Cuesta, Xuban Diez","doi":"10.21136/cmj.2023.0235-22","DOIUrl":null,"url":null,"abstract":"We study the large time behaviour of the solutions of a non-local regularisation of a scalar conservation law. This regularisation is given by a fractional derivative of order $1+\\alpha$, with $\\alpha\\in(0,1)$, which is a Riesz-Feller operator. The non-linear flux is given by the locally Lipschitz function $|u|^{q-1}u/q$ for $q>1$. We show that in the sub-critical case, $1<q<1 +\\alpha$, the large time behaviour is governed by the unique entropy solution of the scalar conservation law. Our proof adapts the proofs of the analogous results for the local case (where the regularisation is the Laplacian) and, more closely, the ones for the regularisation given by the fractional Laplacian with order larger than one, see Ignat and Stan (2018). The main difference is that our operator is not symmetric and its Fourier symbol is not real. We can also adapt the proof and obtain similar results for general Riesz-Feller operators.","PeriodicalId":50596,"journal":{"name":"Czechoslovak Mathematical Journal","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large time behaviour of a conservation law regularised by a Riesz-Feller operator: the sub-critical case\",\"authors\":\"C. M. Cuesta, Xuban Diez\",\"doi\":\"10.21136/cmj.2023.0235-22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the large time behaviour of the solutions of a non-local regularisation of a scalar conservation law. This regularisation is given by a fractional derivative of order $1+\\\\alpha$, with $\\\\alpha\\\\in(0,1)$, which is a Riesz-Feller operator. The non-linear flux is given by the locally Lipschitz function $|u|^{q-1}u/q$ for $q>1$. We show that in the sub-critical case, $1<q<1 +\\\\alpha$, the large time behaviour is governed by the unique entropy solution of the scalar conservation law. Our proof adapts the proofs of the analogous results for the local case (where the regularisation is the Laplacian) and, more closely, the ones for the regularisation given by the fractional Laplacian with order larger than one, see Ignat and Stan (2018). The main difference is that our operator is not symmetric and its Fourier symbol is not real. We can also adapt the proof and obtain similar results for general Riesz-Feller operators.\",\"PeriodicalId\":50596,\"journal\":{\"name\":\"Czechoslovak Mathematical Journal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Czechoslovak Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.21136/cmj.2023.0235-22\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Czechoslovak Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/cmj.2023.0235-22","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究标量守恒律的非局部正则化解的大时间行为。这个正则化是由阶$1+\alpha$的分数阶导数给出的,其中$\alpha\in(0,1)$,这是一个Riesz-Feller算子。非线性通量由局部Lipschitz函数$|u|^{q-1}u/q$给出。我们证明了在次临界情况下,$1本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Large time behaviour of a conservation law regularised by a Riesz-Feller operator: the sub-critical case
We study the large time behaviour of the solutions of a non-local regularisation of a scalar conservation law. This regularisation is given by a fractional derivative of order $1+\alpha$, with $\alpha\in(0,1)$, which is a Riesz-Feller operator. The non-linear flux is given by the locally Lipschitz function $|u|^{q-1}u/q$ for $q>1$. We show that in the sub-critical case, $1
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Czechoslovak Mathematical Journal publishes original research papers of high scientific quality in mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信