Z. Bachok, M. A. Abas, Muhammad Zaim Hanif Nazarudin, Saifulmajdy A. Zahiri, Mohamad Fikri Mohd Sharif, F. Che Ani
{"title":"不同焊料体积对激光焊接过程的影响:数值与实验研究","authors":"Z. Bachok, M. A. Abas, Muhammad Zaim Hanif Nazarudin, Saifulmajdy A. Zahiri, Mohamad Fikri Mohd Sharif, F. Che Ani","doi":"10.1115/1.4054132","DOIUrl":null,"url":null,"abstract":"\n Laser soldering is becoming more popular for soldering pin through-hole (PTH) components onto printed circuit boards (PCBs). Solder volume influences soldering joint reliability. However, it is difficult to accurately measure the effect of solder volume during the laser soldering process. The finite volume method (FVM) is used to simulate the molten solder flow in laser soldering to connect the through-hole capacitor onto the PCB in ANSYS Fluent software. The simulation results reveal the effects of different SAC305 solder volumes on joining quality in terms of fillet shape formation, pressure, and velocity. The preferred solder volume is 1.517 mm3 with a filling time of 1.7 seconds, a temperature of 642K, a hole diameter of 1.0 mm, a lead diameter of 0.5 mm and a PCB thickness of 1.20 mm, produces a fillet shape similar to a real sample of PTH laser soldering joint from the industry. This ideal volume was chosen with a suitable pressure and velocity to create a nice concave fillet shape and minimize voids during soldering. The pressure and velocity increase when the solder volume increases causing solidified solder to melt. The discrepancy between numerical and experimental values of fillet height is comparable, which inferred that the numerical model was well-validated. The good consistency between both results prove that the finite volume model will effectively predict the optimum solder volume. This opens up new opportunities for the optimization of the laser soldering parameters in the application of electronic manufacturing.","PeriodicalId":15663,"journal":{"name":"Journal of Electronic Packaging","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2022-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of Different Solder Volumes On the Laser Soldering Process: Numerical and Experimental Investigation\",\"authors\":\"Z. Bachok, M. A. Abas, Muhammad Zaim Hanif Nazarudin, Saifulmajdy A. Zahiri, Mohamad Fikri Mohd Sharif, F. Che Ani\",\"doi\":\"10.1115/1.4054132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Laser soldering is becoming more popular for soldering pin through-hole (PTH) components onto printed circuit boards (PCBs). Solder volume influences soldering joint reliability. However, it is difficult to accurately measure the effect of solder volume during the laser soldering process. The finite volume method (FVM) is used to simulate the molten solder flow in laser soldering to connect the through-hole capacitor onto the PCB in ANSYS Fluent software. The simulation results reveal the effects of different SAC305 solder volumes on joining quality in terms of fillet shape formation, pressure, and velocity. The preferred solder volume is 1.517 mm3 with a filling time of 1.7 seconds, a temperature of 642K, a hole diameter of 1.0 mm, a lead diameter of 0.5 mm and a PCB thickness of 1.20 mm, produces a fillet shape similar to a real sample of PTH laser soldering joint from the industry. This ideal volume was chosen with a suitable pressure and velocity to create a nice concave fillet shape and minimize voids during soldering. The pressure and velocity increase when the solder volume increases causing solidified solder to melt. The discrepancy between numerical and experimental values of fillet height is comparable, which inferred that the numerical model was well-validated. The good consistency between both results prove that the finite volume model will effectively predict the optimum solder volume. This opens up new opportunities for the optimization of the laser soldering parameters in the application of electronic manufacturing.\",\"PeriodicalId\":15663,\"journal\":{\"name\":\"Journal of Electronic Packaging\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronic Packaging\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4054132\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Packaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4054132","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Effect of Different Solder Volumes On the Laser Soldering Process: Numerical and Experimental Investigation
Laser soldering is becoming more popular for soldering pin through-hole (PTH) components onto printed circuit boards (PCBs). Solder volume influences soldering joint reliability. However, it is difficult to accurately measure the effect of solder volume during the laser soldering process. The finite volume method (FVM) is used to simulate the molten solder flow in laser soldering to connect the through-hole capacitor onto the PCB in ANSYS Fluent software. The simulation results reveal the effects of different SAC305 solder volumes on joining quality in terms of fillet shape formation, pressure, and velocity. The preferred solder volume is 1.517 mm3 with a filling time of 1.7 seconds, a temperature of 642K, a hole diameter of 1.0 mm, a lead diameter of 0.5 mm and a PCB thickness of 1.20 mm, produces a fillet shape similar to a real sample of PTH laser soldering joint from the industry. This ideal volume was chosen with a suitable pressure and velocity to create a nice concave fillet shape and minimize voids during soldering. The pressure and velocity increase when the solder volume increases causing solidified solder to melt. The discrepancy between numerical and experimental values of fillet height is comparable, which inferred that the numerical model was well-validated. The good consistency between both results prove that the finite volume model will effectively predict the optimum solder volume. This opens up new opportunities for the optimization of the laser soldering parameters in the application of electronic manufacturing.
期刊介绍:
The Journal of Electronic Packaging publishes papers that use experimental and theoretical (analytical and computer-aided) methods, approaches, and techniques to address and solve various mechanical, materials, and reliability problems encountered in the analysis, design, manufacturing, testing, and operation of electronic and photonics components, devices, and systems.
Scope: Microsystems packaging; Systems integration; Flexible electronics; Materials with nano structures and in general small scale systems.