韩国南部和西部沿海大跨度桥梁设计风速估算

IF 1.3 Q3 ENGINEERING, MULTIDISCIPLINARY
Dooyong Cho
{"title":"韩国南部和西部沿海大跨度桥梁设计风速估算","authors":"Dooyong Cho","doi":"10.46604/ijeti.2020.3545","DOIUrl":null,"url":null,"abstract":"Recently, many long-span cable supported bridges, including the cable stayed bridges and the suspension bridges, have already been constructed or are planned for construction. Because the meteorological values used to estimate the wind load for designing the long-span bridges were based on data from the 1960s through 1995 in Korea, it is necessary to reconsider the proper design wind load for long-span bridges. In this paper, the research area is confined to the southern and western coasts of Korea where many long-span bridges have been built. The method of moment and the least-squares method are used to estimate the expected wind speeds of a 100-year return period for girder bridges; Gumbel’s distribution is used to estimate the expected wind speeds of a 200-year return period for long-span bridges. As the return period wind speed on the land surface is revised because of recent high-speed velocity, the revised return period wind speed is increased by 17%. The compatibility of return period wind speed is also evaluated using the RMS (root mean square) error method. This paper concludes that the least-squares method is more compatible than the method of moment for the case of the southern and western coasts of Korea.","PeriodicalId":43808,"journal":{"name":"International Journal of Engineering and Technology Innovation","volume":"10 1","pages":"146-155"},"PeriodicalIF":1.3000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design Wind Speed Estimation for Long Span Bridges in Korean Southern and Western Coasts\",\"authors\":\"Dooyong Cho\",\"doi\":\"10.46604/ijeti.2020.3545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, many long-span cable supported bridges, including the cable stayed bridges and the suspension bridges, have already been constructed or are planned for construction. Because the meteorological values used to estimate the wind load for designing the long-span bridges were based on data from the 1960s through 1995 in Korea, it is necessary to reconsider the proper design wind load for long-span bridges. In this paper, the research area is confined to the southern and western coasts of Korea where many long-span bridges have been built. The method of moment and the least-squares method are used to estimate the expected wind speeds of a 100-year return period for girder bridges; Gumbel’s distribution is used to estimate the expected wind speeds of a 200-year return period for long-span bridges. As the return period wind speed on the land surface is revised because of recent high-speed velocity, the revised return period wind speed is increased by 17%. The compatibility of return period wind speed is also evaluated using the RMS (root mean square) error method. This paper concludes that the least-squares method is more compatible than the method of moment for the case of the southern and western coasts of Korea.\",\"PeriodicalId\":43808,\"journal\":{\"name\":\"International Journal of Engineering and Technology Innovation\",\"volume\":\"10 1\",\"pages\":\"146-155\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering and Technology Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46604/ijeti.2020.3545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/ijeti.2020.3545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

近年来,包括斜拉桥和悬索桥在内的许多大跨度斜拉桥已经建成或正在规划建设。由于设计大跨度桥梁时所用的风荷载气象值是基于韩国20世纪60年代至1995年的数据,因此有必要重新考虑大跨度桥梁的合理设计风荷载。在本文中,研究区域仅限于韩国的南部和西部海岸,那里已经建造了许多大跨度桥梁。采用矩量法和最小二乘法估计了梁桥100年回归期的预期风速;Gumbel分布用于估计大跨度桥梁200年回归期的预期风速。由于近期高速的影响,对地表的回归期风速进行了修正,修正后的回归期风速增加了17%。采用均方根误差法对回归期风速的相容性进行了评价。本文的结论是,对于韩国南部和西部海岸的情况,最小二乘法比矩量法更适合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design Wind Speed Estimation for Long Span Bridges in Korean Southern and Western Coasts
Recently, many long-span cable supported bridges, including the cable stayed bridges and the suspension bridges, have already been constructed or are planned for construction. Because the meteorological values used to estimate the wind load for designing the long-span bridges were based on data from the 1960s through 1995 in Korea, it is necessary to reconsider the proper design wind load for long-span bridges. In this paper, the research area is confined to the southern and western coasts of Korea where many long-span bridges have been built. The method of moment and the least-squares method are used to estimate the expected wind speeds of a 100-year return period for girder bridges; Gumbel’s distribution is used to estimate the expected wind speeds of a 200-year return period for long-span bridges. As the return period wind speed on the land surface is revised because of recent high-speed velocity, the revised return period wind speed is increased by 17%. The compatibility of return period wind speed is also evaluated using the RMS (root mean square) error method. This paper concludes that the least-squares method is more compatible than the method of moment for the case of the southern and western coasts of Korea.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊介绍: The IJETI journal focus on the field of engineering and technology Innovation. And it publishes original papers including but not limited to the following fields: Automation Engineering Civil Engineering Control Engineering Electric Engineering Electronic Engineering Green Technology Information Engineering Mechanical Engineering Material Engineering Mechatronics and Robotics Engineering Nanotechnology Optic Engineering Sport Science and Technology Innovation Management Other Engineering and Technology Related Topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信