{"title":"结合RBF神经网络和极点残差传递函数的自定义响应微波结构参数化建模","authors":"Y. Ma, S. Wu, Y. Yuan, N. Yuan","doi":"10.13164/re.2022.0185","DOIUrl":null,"url":null,"abstract":". This paper proposed a parametric modeling technique for the microwave structures with a customization magnitude response by combining the RBF neural network and pole-residue-based transfer functions. The Latin hypercube sampling method is used for sampling given physical ranges and obtaining the EM behaviors of the microwave structures. A pole sorting process and a modified pole-residues splitting process are proposed to solve the pole sequence chaos and order-changing problems which occur in the modeling process. The pole-residues parameters after the above pre-processing steps are used as the inputs of the RBF neural network and the physical parameters are used as the outputs of RBF network. Then, the known magnitude response of the microwave structure are used as the prior knowledge to guide obtaining the goal pole-residues values corresponding to the giving magnitude response specification. After the training process of the RBF model, the goal pole-residues are input into the trained RBF network and the goal physical parameters corresponding to the customization responses is obtained. Finally, this model technique is illustrated by the two examples of microwave structures.","PeriodicalId":54514,"journal":{"name":"Radioengineering","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parametric Modeling of Microwave Structure with Customization Responses by Combining RBF Neural Network and Pole-Residue-Based Transfer Functions\",\"authors\":\"Y. Ma, S. Wu, Y. Yuan, N. Yuan\",\"doi\":\"10.13164/re.2022.0185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". This paper proposed a parametric modeling technique for the microwave structures with a customization magnitude response by combining the RBF neural network and pole-residue-based transfer functions. The Latin hypercube sampling method is used for sampling given physical ranges and obtaining the EM behaviors of the microwave structures. A pole sorting process and a modified pole-residues splitting process are proposed to solve the pole sequence chaos and order-changing problems which occur in the modeling process. The pole-residues parameters after the above pre-processing steps are used as the inputs of the RBF neural network and the physical parameters are used as the outputs of RBF network. Then, the known magnitude response of the microwave structure are used as the prior knowledge to guide obtaining the goal pole-residues values corresponding to the giving magnitude response specification. After the training process of the RBF model, the goal pole-residues are input into the trained RBF network and the goal physical parameters corresponding to the customization responses is obtained. Finally, this model technique is illustrated by the two examples of microwave structures.\",\"PeriodicalId\":54514,\"journal\":{\"name\":\"Radioengineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.13164/re.2022.0185\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.13164/re.2022.0185","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Parametric Modeling of Microwave Structure with Customization Responses by Combining RBF Neural Network and Pole-Residue-Based Transfer Functions
. This paper proposed a parametric modeling technique for the microwave structures with a customization magnitude response by combining the RBF neural network and pole-residue-based transfer functions. The Latin hypercube sampling method is used for sampling given physical ranges and obtaining the EM behaviors of the microwave structures. A pole sorting process and a modified pole-residues splitting process are proposed to solve the pole sequence chaos and order-changing problems which occur in the modeling process. The pole-residues parameters after the above pre-processing steps are used as the inputs of the RBF neural network and the physical parameters are used as the outputs of RBF network. Then, the known magnitude response of the microwave structure are used as the prior knowledge to guide obtaining the goal pole-residues values corresponding to the giving magnitude response specification. After the training process of the RBF model, the goal pole-residues are input into the trained RBF network and the goal physical parameters corresponding to the customization responses is obtained. Finally, this model technique is illustrated by the two examples of microwave structures.
期刊介绍:
Since 1992, the Radioengineering Journal has been publishing original scientific and engineering papers from the area of wireless communication and application of wireless technologies. The submitted papers are expected to deal with electromagnetics (antennas, propagation, microwaves), signals, circuits, optics and related fields.
Each issue of the Radioengineering Journal is started by a feature article. Feature articles are organized by members of the Editorial Board to present the latest development in the selected areas of radio engineering.
The Radioengineering Journal makes a maximum effort to publish submitted papers as quickly as possible. The first round of reviews should be completed within two months. Then, authors are expected to improve their manuscript within one month. If substantial changes are recommended and further reviews are requested by the reviewers, the publication time is prolonged.