{"title":"颤振和r -矩阵的洗牌代数","authors":"Andrei Neguț","doi":"10.1017/S1474748022000184","DOIUrl":null,"url":null,"abstract":"Abstract We define slope subalgebras in the shuffle algebra associated to a (doubled) quiver, thus yielding a factorization of the universal R-matrix of the double of the shuffle algebra in question. We conjecture that this factorization matches the one defined by [1, 18, 32, 33, 34] using Nakajima quiver varieties.","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":"22 1","pages":"2583 - 2618"},"PeriodicalIF":1.1000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"SHUFFLE ALGEBRAS FOR QUIVERS AND R-MATRICES\",\"authors\":\"Andrei Neguț\",\"doi\":\"10.1017/S1474748022000184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We define slope subalgebras in the shuffle algebra associated to a (doubled) quiver, thus yielding a factorization of the universal R-matrix of the double of the shuffle algebra in question. We conjecture that this factorization matches the one defined by [1, 18, 32, 33, 34] using Nakajima quiver varieties.\",\"PeriodicalId\":50002,\"journal\":{\"name\":\"Journal of the Institute of Mathematics of Jussieu\",\"volume\":\"22 1\",\"pages\":\"2583 - 2618\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Institute of Mathematics of Jussieu\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S1474748022000184\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Institute of Mathematics of Jussieu","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S1474748022000184","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Abstract We define slope subalgebras in the shuffle algebra associated to a (doubled) quiver, thus yielding a factorization of the universal R-matrix of the double of the shuffle algebra in question. We conjecture that this factorization matches the one defined by [1, 18, 32, 33, 34] using Nakajima quiver varieties.
期刊介绍:
The Journal of the Institute of Mathematics of Jussieu publishes original research papers in any branch of pure mathematics; papers in logic and applied mathematics will also be considered, particularly when they have direct connections with pure mathematics. Its policy is to feature a wide variety of research areas and it welcomes the submission of papers from all parts of the world. Selection for publication is on the basis of reports from specialist referees commissioned by the Editors.