Elena Colicino, Katerina Margetaki, Damaskini Valvi, Nicolo Foppa Pedretti, Nikos Stratakis, Marina Vafeiadi, Theano Roumeliotaki, Soterios A Kyrtopoulos, Hannu Kiviranta, Euripides G Stephanou, Manolis Kogevinas, Rob McConnell, Kiros T Berhane, Leda Chatzi, David V Conti
{"title":"产前接触多种有机氯化合物与儿童体重指数","authors":"Elena Colicino, Katerina Margetaki, Damaskini Valvi, Nicolo Foppa Pedretti, Nikos Stratakis, Marina Vafeiadi, Theano Roumeliotaki, Soterios A Kyrtopoulos, Hannu Kiviranta, Euripides G Stephanou, Manolis Kogevinas, Rob McConnell, Kiros T Berhane, Leda Chatzi, David V Conti","doi":"10.1097/EE9.0000000000000201","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Prenatal exposure to organochlorine compounds (OCs) has been associated with increased childhood body mass index (BMI); however, only a few studies have focused on longitudinal BMI trajectories, and none of them used multiple exposure mixture approaches.</p><p><strong>Aim: </strong>To determine the association between <i>in-utero</i> exposure to eight OCs and childhood BMI measures (BMI and BMI z-score) at 4 years and their yearly change across 4-12 years of age in 279 Rhea child-mother dyads.</p><p><strong>Methods: </strong>We applied three approaches: (1) linear mixed-effect regressions (LMR) to associate individual compounds with BMI measures; (2) Bayesian weighted quantile sum regressions (BWQSR) to provide an overall OC mixture association with BMI measures; and (3)Bayesian varying coefficient kernel machine regressions (BVCKMR) to model nonlinear and nonadditive associations.</p><p><strong>Results: </strong>In the LMR, yearly change of BMI measures was consistently associated with a quartile increase in hexachlorobenzene (HCB) (estimate [95% Confidence or Credible interval] BMI: 0.10 [0.06, 0.14]; BMI z-score: 0.02 [0.01, 0.04]). BWQSR results showed that a quartile increase in mixture concentrations was associated with yearly increase of BMI measures (BMI: 0.10 [0.01, 0.18]; BMI z-score: 0.03 [0.003, 0.06]). In the BVCKMR, a quartile increase in dichlorodiphenyldichloroethylene concentrations was associated with higher BMI measures at 4 years (BMI: 0.33 [0.24, 0.43]; BMI z-score: 0.19 [0.15, 0.24]); whereas a quartile increase in HCB and polychlorinated biphenyls (PCB)-118 levels was positively associated with BMI measures yearly change (BMI: HCB:0.10 [0.07, 0.13], PCB-118:0.08 [0.04, 012]; BMI z-score: HCB:0.03 [0.02, 0.05], PCB-118:0.02 [0.002,04]). BVCKMR suggested that PCBs had nonlinear relationships with BMI measures, and HCB interacted with other compounds.</p><p><strong>Conclusions: </strong>All analyses consistently demonstrated detrimental associations between prenatal OC exposures and childhood BMI measures.</p>","PeriodicalId":11713,"journal":{"name":"Environmental Epidemiology","volume":"66 3","pages":"e201"},"PeriodicalIF":3.3000,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9187184/pdf/","citationCount":"0","resultStr":"{\"title\":\"Prenatal exposure to multiple organochlorine compounds and childhood body mass index.\",\"authors\":\"Elena Colicino, Katerina Margetaki, Damaskini Valvi, Nicolo Foppa Pedretti, Nikos Stratakis, Marina Vafeiadi, Theano Roumeliotaki, Soterios A Kyrtopoulos, Hannu Kiviranta, Euripides G Stephanou, Manolis Kogevinas, Rob McConnell, Kiros T Berhane, Leda Chatzi, David V Conti\",\"doi\":\"10.1097/EE9.0000000000000201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Prenatal exposure to organochlorine compounds (OCs) has been associated with increased childhood body mass index (BMI); however, only a few studies have focused on longitudinal BMI trajectories, and none of them used multiple exposure mixture approaches.</p><p><strong>Aim: </strong>To determine the association between <i>in-utero</i> exposure to eight OCs and childhood BMI measures (BMI and BMI z-score) at 4 years and their yearly change across 4-12 years of age in 279 Rhea child-mother dyads.</p><p><strong>Methods: </strong>We applied three approaches: (1) linear mixed-effect regressions (LMR) to associate individual compounds with BMI measures; (2) Bayesian weighted quantile sum regressions (BWQSR) to provide an overall OC mixture association with BMI measures; and (3)Bayesian varying coefficient kernel machine regressions (BVCKMR) to model nonlinear and nonadditive associations.</p><p><strong>Results: </strong>In the LMR, yearly change of BMI measures was consistently associated with a quartile increase in hexachlorobenzene (HCB) (estimate [95% Confidence or Credible interval] BMI: 0.10 [0.06, 0.14]; BMI z-score: 0.02 [0.01, 0.04]). BWQSR results showed that a quartile increase in mixture concentrations was associated with yearly increase of BMI measures (BMI: 0.10 [0.01, 0.18]; BMI z-score: 0.03 [0.003, 0.06]). In the BVCKMR, a quartile increase in dichlorodiphenyldichloroethylene concentrations was associated with higher BMI measures at 4 years (BMI: 0.33 [0.24, 0.43]; BMI z-score: 0.19 [0.15, 0.24]); whereas a quartile increase in HCB and polychlorinated biphenyls (PCB)-118 levels was positively associated with BMI measures yearly change (BMI: HCB:0.10 [0.07, 0.13], PCB-118:0.08 [0.04, 012]; BMI z-score: HCB:0.03 [0.02, 0.05], PCB-118:0.02 [0.002,04]). BVCKMR suggested that PCBs had nonlinear relationships with BMI measures, and HCB interacted with other compounds.</p><p><strong>Conclusions: </strong>All analyses consistently demonstrated detrimental associations between prenatal OC exposures and childhood BMI measures.</p>\",\"PeriodicalId\":11713,\"journal\":{\"name\":\"Environmental Epidemiology\",\"volume\":\"66 3\",\"pages\":\"e201\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2022-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9187184/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Epidemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1097/EE9.0000000000000201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/EE9.0000000000000201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Prenatal exposure to multiple organochlorine compounds and childhood body mass index.
Background: Prenatal exposure to organochlorine compounds (OCs) has been associated with increased childhood body mass index (BMI); however, only a few studies have focused on longitudinal BMI trajectories, and none of them used multiple exposure mixture approaches.
Aim: To determine the association between in-utero exposure to eight OCs and childhood BMI measures (BMI and BMI z-score) at 4 years and their yearly change across 4-12 years of age in 279 Rhea child-mother dyads.
Methods: We applied three approaches: (1) linear mixed-effect regressions (LMR) to associate individual compounds with BMI measures; (2) Bayesian weighted quantile sum regressions (BWQSR) to provide an overall OC mixture association with BMI measures; and (3)Bayesian varying coefficient kernel machine regressions (BVCKMR) to model nonlinear and nonadditive associations.
Results: In the LMR, yearly change of BMI measures was consistently associated with a quartile increase in hexachlorobenzene (HCB) (estimate [95% Confidence or Credible interval] BMI: 0.10 [0.06, 0.14]; BMI z-score: 0.02 [0.01, 0.04]). BWQSR results showed that a quartile increase in mixture concentrations was associated with yearly increase of BMI measures (BMI: 0.10 [0.01, 0.18]; BMI z-score: 0.03 [0.003, 0.06]). In the BVCKMR, a quartile increase in dichlorodiphenyldichloroethylene concentrations was associated with higher BMI measures at 4 years (BMI: 0.33 [0.24, 0.43]; BMI z-score: 0.19 [0.15, 0.24]); whereas a quartile increase in HCB and polychlorinated biphenyls (PCB)-118 levels was positively associated with BMI measures yearly change (BMI: HCB:0.10 [0.07, 0.13], PCB-118:0.08 [0.04, 012]; BMI z-score: HCB:0.03 [0.02, 0.05], PCB-118:0.02 [0.002,04]). BVCKMR suggested that PCBs had nonlinear relationships with BMI measures, and HCB interacted with other compounds.
Conclusions: All analyses consistently demonstrated detrimental associations between prenatal OC exposures and childhood BMI measures.