Mañé精确磁拉格朗日集的一般性质

IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED
Alexandre Rocha
{"title":"Mañé精确磁拉格朗日集的一般性质","authors":"Alexandre Rocha","doi":"10.1134/S1560354721030060","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(M\\)</span> be a closed manifold and <span>\\(L\\)</span> an exact magnetic Lagrangian. In this\npaper we prove that there exists a residual set <span>\\(\\mathcal{G}\\)</span> of <span>\\(H^{1}\\left(M;\\mathbb{R}\\right)\\)</span> such that the property\n</p><div><div><span>\n$${\\widetilde{\\mathcal{M}}}\\left(c\\right)={\\widetilde{\\mathcal{A}}}\\left(c\\right)={\\widetilde{\\mathcal{N}}}\\left(c\\right),\\forall c\\in\\mathcal{G},$$\n</span></div></div><p>\nwith <span>\\({\\widetilde{\\mathcal{M}}}\\left(c\\right)\\)</span> supporting a uniquely\nergodic measure, is generic in the family of exact magnetic Lagrangians. We also prove\nthat, for a fixed cohomology class <span>\\(c\\)</span>, there exists a\nresidual set of exact magnetic Lagrangians such that, when this\nunique\nmeasure is supported on a periodic orbit, this orbit is hyperbolic and its\nstable and unstable manifolds intersect transversally. This result is a\nversion of an analogous theorem, for Tonelli Lagrangians, proven in [6].</p></div>","PeriodicalId":752,"journal":{"name":"Regular and Chaotic Dynamics","volume":"26 3","pages":"293 - 304"},"PeriodicalIF":0.8000,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generic Properties of Mañé’s Set of Exact Magnetic Lagrangians\",\"authors\":\"Alexandre Rocha\",\"doi\":\"10.1134/S1560354721030060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(M\\\\)</span> be a closed manifold and <span>\\\\(L\\\\)</span> an exact magnetic Lagrangian. In this\\npaper we prove that there exists a residual set <span>\\\\(\\\\mathcal{G}\\\\)</span> of <span>\\\\(H^{1}\\\\left(M;\\\\mathbb{R}\\\\right)\\\\)</span> such that the property\\n</p><div><div><span>\\n$${\\\\widetilde{\\\\mathcal{M}}}\\\\left(c\\\\right)={\\\\widetilde{\\\\mathcal{A}}}\\\\left(c\\\\right)={\\\\widetilde{\\\\mathcal{N}}}\\\\left(c\\\\right),\\\\forall c\\\\in\\\\mathcal{G},$$\\n</span></div></div><p>\\nwith <span>\\\\({\\\\widetilde{\\\\mathcal{M}}}\\\\left(c\\\\right)\\\\)</span> supporting a uniquely\\nergodic measure, is generic in the family of exact magnetic Lagrangians. We also prove\\nthat, for a fixed cohomology class <span>\\\\(c\\\\)</span>, there exists a\\nresidual set of exact magnetic Lagrangians such that, when this\\nunique\\nmeasure is supported on a periodic orbit, this orbit is hyperbolic and its\\nstable and unstable manifolds intersect transversally. This result is a\\nversion of an analogous theorem, for Tonelli Lagrangians, proven in [6].</p></div>\",\"PeriodicalId\":752,\"journal\":{\"name\":\"Regular and Chaotic Dynamics\",\"volume\":\"26 3\",\"pages\":\"293 - 304\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regular and Chaotic Dynamics\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1560354721030060\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regular and Chaotic Dynamics","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S1560354721030060","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

设\(M\)为封闭流形\(L\)为精确磁拉格朗日量。本文证明了\(H^{1}\left(M;\mathbb{R}\right)\)的残差集\(\mathcal{G}\)的存在,使得具有\({\widetilde{\mathcal{M}}}\left(c\right)\)支持唯一遍历测度的性质$${\widetilde{\mathcal{M}}}\left(c\right)={\widetilde{\mathcal{A}}}\left(c\right)={\widetilde{\mathcal{N}}}\left(c\right),\forall c\in\mathcal{G},$$在精确磁拉格朗日族中是一般的。我们还证明了,对于一个固定上同调类\(c\),存在一个精确磁拉格朗日残集,使得当这个唯一度量被支持在一个周期轨道上时,这个轨道是双曲的,并且它的稳定流形和不稳定流形横向相交。这个结果是对在[6]中证明的一个类似定理的厌恶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generic Properties of Mañé’s Set of Exact Magnetic Lagrangians

Let \(M\) be a closed manifold and \(L\) an exact magnetic Lagrangian. In this paper we prove that there exists a residual set \(\mathcal{G}\) of \(H^{1}\left(M;\mathbb{R}\right)\) such that the property

$${\widetilde{\mathcal{M}}}\left(c\right)={\widetilde{\mathcal{A}}}\left(c\right)={\widetilde{\mathcal{N}}}\left(c\right),\forall c\in\mathcal{G},$$

with \({\widetilde{\mathcal{M}}}\left(c\right)\) supporting a uniquely ergodic measure, is generic in the family of exact magnetic Lagrangians. We also prove that, for a fixed cohomology class \(c\), there exists a residual set of exact magnetic Lagrangians such that, when this unique measure is supported on a periodic orbit, this orbit is hyperbolic and its stable and unstable manifolds intersect transversally. This result is a version of an analogous theorem, for Tonelli Lagrangians, proven in [6].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.10%
发文量
35
审稿时长
>12 weeks
期刊介绍: Regular and Chaotic Dynamics (RCD) is an international journal publishing original research papers in dynamical systems theory and its applications. Rooted in the Moscow school of mathematics and mechanics, the journal successfully combines classical problems, modern mathematical techniques and breakthroughs in the field. Regular and Chaotic Dynamics welcomes papers that establish original results, characterized by rigorous mathematical settings and proofs, and that also address practical problems. In addition to research papers, the journal publishes review articles, historical and polemical essays, and translations of works by influential scientists of past centuries, previously unavailable in English. Along with regular issues, RCD also publishes special issues devoted to particular topics and events in the world of dynamical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信