南非瓦尔优先区上空颗粒物(PM2.5)和地表臭氧(O3)的年代际分析

Q3 Environmental Science
K. Govender, V. Sivakumar
{"title":"南非瓦尔优先区上空颗粒物(PM2.5)和地表臭氧(O3)的年代际分析","authors":"K. Govender, V. Sivakumar","doi":"10.17159/caj/2019/29/2.7578","DOIUrl":null,"url":null,"abstract":"Atmospheric pollutants that affect human health most significantly are particulate matter (PM2.5) and surface ozone (O3). This paper analysed the long-term temporal trends for PM2.5 and ground level O3 for six air quality monitoring stations in the Vaal Triangle Area of South Africa from 2007 to 2017. Research has been conducted on the short-term temporal trends for PM2.5 concentration and surface O3 concentrations. There are no studies that have focussed on the long-term temporal trends for PM2.5 and O3 in the Vaal Triangle Area of South Africa, because these air quality monitoring stations have only existed for a period of approximately 11 years. The data used in this study is derived from ground-based instruments from the South African Weather Service. Temporal patterns for time of day, days of the week, and seasons were observed for all air quality stations. PM2.5 concentration increased during early mornings and late afternoons, with higher concentration during weekdays than weekends and an increase from late winter through to spring and summer. Surface O3 concentrations peaked during the spring and summer months and during midday when there was maximum sunlight acting as a catalyst for photochemical reactions. The long term trends illustrated that there has been no significant decrease in annual average concentration for PM2.5 in four of the six stations and surface O3 for the six stations in the past 10 years in the Vaal Triangle Area of South Africa.","PeriodicalId":37511,"journal":{"name":"Clean Air Journal","volume":"96 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A decadal analysis of particulate matter (PM2.5) and surface ozone (O3) over Vaal Priority Area, South Africa\",\"authors\":\"K. Govender, V. Sivakumar\",\"doi\":\"10.17159/caj/2019/29/2.7578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atmospheric pollutants that affect human health most significantly are particulate matter (PM2.5) and surface ozone (O3). This paper analysed the long-term temporal trends for PM2.5 and ground level O3 for six air quality monitoring stations in the Vaal Triangle Area of South Africa from 2007 to 2017. Research has been conducted on the short-term temporal trends for PM2.5 concentration and surface O3 concentrations. There are no studies that have focussed on the long-term temporal trends for PM2.5 and O3 in the Vaal Triangle Area of South Africa, because these air quality monitoring stations have only existed for a period of approximately 11 years. The data used in this study is derived from ground-based instruments from the South African Weather Service. Temporal patterns for time of day, days of the week, and seasons were observed for all air quality stations. PM2.5 concentration increased during early mornings and late afternoons, with higher concentration during weekdays than weekends and an increase from late winter through to spring and summer. Surface O3 concentrations peaked during the spring and summer months and during midday when there was maximum sunlight acting as a catalyst for photochemical reactions. The long term trends illustrated that there has been no significant decrease in annual average concentration for PM2.5 in four of the six stations and surface O3 for the six stations in the past 10 years in the Vaal Triangle Area of South Africa.\",\"PeriodicalId\":37511,\"journal\":{\"name\":\"Clean Air Journal\",\"volume\":\"96 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clean Air Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17159/caj/2019/29/2.7578\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clean Air Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17159/caj/2019/29/2.7578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 10

摘要

对人类健康影响最大的大气污染物是颗粒物(PM2.5)和地表臭氧(O3)。本文分析了2007年至2017年南非瓦尔三角地区六个空气质量监测站PM2.5和地面O3的长期时间趋势。已经对PM2.5浓度和表面O3浓度的短期时间趋势进行了研究。没有研究关注南非瓦尔三角地区PM2.5和O3的长期时间趋势,因为这些空气质量监测站只存在了大约11年。本研究中使用的数据来自南非气象局的地面仪器。观察了所有空气质量站一天中的时间、一周中的几天和季节的时间模式。PM2.5浓度在清晨和下午晚些时候增加,工作日的浓度高于周末,从冬末到春季和夏季都有所增加。地表O3浓度在春季和夏季以及中午达到峰值,此时有最大的阳光作为光化学反应的催化剂。长期趋势表明,在过去10年中,南非瓦尔三角地区六个站点中的四个站点的PM2.5年平均浓度和六个站点的地表O3年平均浓度没有显著下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A decadal analysis of particulate matter (PM2.5) and surface ozone (O3) over Vaal Priority Area, South Africa
Atmospheric pollutants that affect human health most significantly are particulate matter (PM2.5) and surface ozone (O3). This paper analysed the long-term temporal trends for PM2.5 and ground level O3 for six air quality monitoring stations in the Vaal Triangle Area of South Africa from 2007 to 2017. Research has been conducted on the short-term temporal trends for PM2.5 concentration and surface O3 concentrations. There are no studies that have focussed on the long-term temporal trends for PM2.5 and O3 in the Vaal Triangle Area of South Africa, because these air quality monitoring stations have only existed for a period of approximately 11 years. The data used in this study is derived from ground-based instruments from the South African Weather Service. Temporal patterns for time of day, days of the week, and seasons were observed for all air quality stations. PM2.5 concentration increased during early mornings and late afternoons, with higher concentration during weekdays than weekends and an increase from late winter through to spring and summer. Surface O3 concentrations peaked during the spring and summer months and during midday when there was maximum sunlight acting as a catalyst for photochemical reactions. The long term trends illustrated that there has been no significant decrease in annual average concentration for PM2.5 in four of the six stations and surface O3 for the six stations in the past 10 years in the Vaal Triangle Area of South Africa.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Clean Air Journal
Clean Air Journal Environmental Science-Management, Monitoring, Policy and Law
CiteScore
1.80
自引率
0.00%
发文量
16
审稿时长
8 weeks
期刊介绍: Clean Air Journal is the official publication of the National Association for Clean Air, a not-for-profit organisation. Clean Air Journal is a peer-reviewed journal for those interested in air quality, air quality management, and the impacts of air pollution relevant to Africa. The focus of the journal includes, but is not limited to: Impacts of human activities and natural processes on ambient air quality Air quality and climate change linkages Air pollution mitigation technologies and applications Matters of public policy regarding air quality management Measurement and analysis of ambient and indoor air pollution Atmospheric modelling application and development Atmospheric emissions Other topics on atmospheric physics or chemistry with particular relevance to Africa The scope of the journal is broad, but the core theme of the journal is air quality in Africa.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信