{"title":"OPAL:用于无监督光场视差估计的遮挡模式感知损失","authors":"Peng Li, Jiayin Zhao, Jingyao Wu, Chao Deng, Haoqian Wang, Tao Yu","doi":"10.48550/arXiv.2203.02231","DOIUrl":null,"url":null,"abstract":"Light field disparity estimation is an essential task in computer vision. Currently, supervised learning-based methods have achieved better performance than both unsupervised and optimization-based methods. However, the generalization capacity of supervised methods on real-world data, where no ground truth is available for training, remains limited. In this paper, we argue that unsupervised methods can achieve not only much stronger generalization capacity on real-world data but also more accurate disparity estimation results on synthetic datasets. To fulfill this goal, we present the Occlusion Pattern Aware Loss, named OPAL, which successfully extracts and encodes general occlusion patterns inherent in the light field for calculating the disparity loss. OPAL enables: i) accurate and robust disparity estimation by teaching the network how to handle occlusions effectively and ii) significantly reduced network parameters required for accurate and efficient estimation. We further propose an EPI transformer and a gradient-based refinement module for achieving more accurate and pixel-aligned disparity estimation results. Extensive experiments demonstrate our method not only significantly improves the accuracy compared with SOTA unsupervised methods, but also possesses stronger generalization capacity on real-world data compared with SOTA supervised methods. Last but not least, the network training and inference efficiency are much higher than existing learning-based methods. Our code will be made publicly available.","PeriodicalId":13426,"journal":{"name":"IEEE Transactions on Pattern Analysis and Machine Intelligence","volume":"67 40","pages":""},"PeriodicalIF":20.8000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"OPAL: Occlusion Pattern Aware Loss for Unsupervised Light Field Disparity Estimation\",\"authors\":\"Peng Li, Jiayin Zhao, Jingyao Wu, Chao Deng, Haoqian Wang, Tao Yu\",\"doi\":\"10.48550/arXiv.2203.02231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Light field disparity estimation is an essential task in computer vision. Currently, supervised learning-based methods have achieved better performance than both unsupervised and optimization-based methods. However, the generalization capacity of supervised methods on real-world data, where no ground truth is available for training, remains limited. In this paper, we argue that unsupervised methods can achieve not only much stronger generalization capacity on real-world data but also more accurate disparity estimation results on synthetic datasets. To fulfill this goal, we present the Occlusion Pattern Aware Loss, named OPAL, which successfully extracts and encodes general occlusion patterns inherent in the light field for calculating the disparity loss. OPAL enables: i) accurate and robust disparity estimation by teaching the network how to handle occlusions effectively and ii) significantly reduced network parameters required for accurate and efficient estimation. We further propose an EPI transformer and a gradient-based refinement module for achieving more accurate and pixel-aligned disparity estimation results. Extensive experiments demonstrate our method not only significantly improves the accuracy compared with SOTA unsupervised methods, but also possesses stronger generalization capacity on real-world data compared with SOTA supervised methods. Last but not least, the network training and inference efficiency are much higher than existing learning-based methods. Our code will be made publicly available.\",\"PeriodicalId\":13426,\"journal\":{\"name\":\"IEEE Transactions on Pattern Analysis and Machine Intelligence\",\"volume\":\"67 40\",\"pages\":\"\"},\"PeriodicalIF\":20.8000,\"publicationDate\":\"2022-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Pattern Analysis and Machine Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2203.02231\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Pattern Analysis and Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.48550/arXiv.2203.02231","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
OPAL: Occlusion Pattern Aware Loss for Unsupervised Light Field Disparity Estimation
Light field disparity estimation is an essential task in computer vision. Currently, supervised learning-based methods have achieved better performance than both unsupervised and optimization-based methods. However, the generalization capacity of supervised methods on real-world data, where no ground truth is available for training, remains limited. In this paper, we argue that unsupervised methods can achieve not only much stronger generalization capacity on real-world data but also more accurate disparity estimation results on synthetic datasets. To fulfill this goal, we present the Occlusion Pattern Aware Loss, named OPAL, which successfully extracts and encodes general occlusion patterns inherent in the light field for calculating the disparity loss. OPAL enables: i) accurate and robust disparity estimation by teaching the network how to handle occlusions effectively and ii) significantly reduced network parameters required for accurate and efficient estimation. We further propose an EPI transformer and a gradient-based refinement module for achieving more accurate and pixel-aligned disparity estimation results. Extensive experiments demonstrate our method not only significantly improves the accuracy compared with SOTA unsupervised methods, but also possesses stronger generalization capacity on real-world data compared with SOTA supervised methods. Last but not least, the network training and inference efficiency are much higher than existing learning-based methods. Our code will be made publicly available.
期刊介绍:
The IEEE Transactions on Pattern Analysis and Machine Intelligence publishes articles on all traditional areas of computer vision and image understanding, all traditional areas of pattern analysis and recognition, and selected areas of machine intelligence, with a particular emphasis on machine learning for pattern analysis. Areas such as techniques for visual search, document and handwriting analysis, medical image analysis, video and image sequence analysis, content-based retrieval of image and video, face and gesture recognition and relevant specialized hardware and/or software architectures are also covered.