BayesFit:使用贝叶斯推理建模心理物理数据的工具

Q1 Social Sciences
Michael Slugocki, A. Sekuler, P. Bennett
{"title":"BayesFit:使用贝叶斯推理建模心理物理数据的工具","authors":"Michael Slugocki, A. Sekuler, P. Bennett","doi":"10.5334/JORS.202","DOIUrl":null,"url":null,"abstract":"BayesFit is a module for Python that allows users to fit models to psychophysical data using Bayesian inference. The module aims to make it easier to develop probabilistic models for psychophysical data in Python by providing users with a simple API that streamlines the process of defining psychophysical models, obtaining fits, extracting outputs, and visualizing fitted models. Our software implementation uses numerical integration as the primary tool to fit models, which avoids the complications that arise in using Markov Chain Monte Carlo (MCMC) methods [1]. The source code for BayesFit is available at https://github.com/slugocm/bayesfit and API documentation at http://www.slugocm.ca/bayesfit/ . This module is extensible, and many of the functions primarily rely on Numpy [2] and therefore can be reused as newer versions of Python are developed to ensure researchers always have a tool available to ease the process of fitting models to psychophysical data.","PeriodicalId":37323,"journal":{"name":"Journal of Open Research Software","volume":"37 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BayesFit: A Tool for Modeling Psychophysical Data Using Bayesian Inference\",\"authors\":\"Michael Slugocki, A. Sekuler, P. Bennett\",\"doi\":\"10.5334/JORS.202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BayesFit is a module for Python that allows users to fit models to psychophysical data using Bayesian inference. The module aims to make it easier to develop probabilistic models for psychophysical data in Python by providing users with a simple API that streamlines the process of defining psychophysical models, obtaining fits, extracting outputs, and visualizing fitted models. Our software implementation uses numerical integration as the primary tool to fit models, which avoids the complications that arise in using Markov Chain Monte Carlo (MCMC) methods [1]. The source code for BayesFit is available at https://github.com/slugocm/bayesfit and API documentation at http://www.slugocm.ca/bayesfit/ . This module is extensible, and many of the functions primarily rely on Numpy [2] and therefore can be reused as newer versions of Python are developed to ensure researchers always have a tool available to ease the process of fitting models to psychophysical data.\",\"PeriodicalId\":37323,\"journal\":{\"name\":\"Journal of Open Research Software\",\"volume\":\"37 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Open Research Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5334/JORS.202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Open Research Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5334/JORS.202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

BayesFit是Python的一个模块,允许用户使用贝叶斯推理将模型与心理物理数据相匹配。该模块旨在为用户提供一个简单的API,简化定义心理物理模型、获得拟合、提取输出和可视化拟合模型的过程,从而更容易用Python开发心理物理数据的概率模型。我们的软件实现使用数值积分作为拟合模型的主要工具,这避免了使用马尔可夫链蒙特卡罗(MCMC)方法时出现的复杂性[1]。BayesFit的源代码可在https://github.com/slugocm/bayesfitAPI文件http://www.slugocm.ca/bayesfit/。该模块是可扩展的,许多功能主要依赖于Numpy[2],因此可以在开发新版本的Python时重复使用,以确保研究人员始终有一个可用的工具来简化将模型拟合到心理物理数据的过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BayesFit: A Tool for Modeling Psychophysical Data Using Bayesian Inference
BayesFit is a module for Python that allows users to fit models to psychophysical data using Bayesian inference. The module aims to make it easier to develop probabilistic models for psychophysical data in Python by providing users with a simple API that streamlines the process of defining psychophysical models, obtaining fits, extracting outputs, and visualizing fitted models. Our software implementation uses numerical integration as the primary tool to fit models, which avoids the complications that arise in using Markov Chain Monte Carlo (MCMC) methods [1]. The source code for BayesFit is available at https://github.com/slugocm/bayesfit and API documentation at http://www.slugocm.ca/bayesfit/ . This module is extensible, and many of the functions primarily rely on Numpy [2] and therefore can be reused as newer versions of Python are developed to ensure researchers always have a tool available to ease the process of fitting models to psychophysical data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Open Research Software
Journal of Open Research Software Social Sciences-Library and Information Sciences
CiteScore
6.50
自引率
0.00%
发文量
7
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信