{"title":"0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3陶瓷的结构与阻抗分析","authors":"J. K. Mishra, Khusboo Agrawal, B. Behera","doi":"10.2174/1876402913666210929125515","DOIUrl":null,"url":null,"abstract":"\n\nSince (1-x)[Pb(Mg1/3Nb2/3)O3]-(x)PbTiO3 (PMN-PT) ceramic has high dielectric constant and piezoelectric coefficient, it has been widely investigated for profound applications in electro-optical devices, sensors, multilayer capacitors and actuators.\n\n\n\n\nThe aim is to study the structural and electrical properties of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (0.7PMN-0.3PT) ceramic to understand the biphasic structural nature using Rietveld Refinement. Also, it characterises on the basis of electrical properties such as impedance and modulus to understand the relaxation process, type of conduction process as well as the role of grain and grain boundary resistance in the material. \n\n\n\n\n 0.7PMN-0.3PT is synthesised by mixed oxide method using PbO, MgO, Nb2O5 and TiO2 as precursor materials. \n\n\n\n\n The XRD data reveals the biphasic structure of tetragonal phase with the space group of P4mm and monoclinic phase with the space group of Pm. The complex impedance analysis clearly represents the effect of grain on the overall resistance and departs from normal Debye type behaviour. Also, the resistance is found to decrease with temperature, thereby confirming the semiconducting nature of the sample. The presence of long as well as short-range mobility of charge carriers is confirmed from the modulus and impedance analysis. The influence of long-range motion is observed at high temperature and of short-range motion at low temperatures.\n\n\n\n\n XRD analysis confirmed the biphasic structure of M+T phase. The frequency-dependent modulus and impedance spectroscopy show the presence of a relaxation effect in the ceramic which is found to increase with temperature. The Nyquist plot shows that the resistance is decreased with temperature, thereby confirming the NTCR behaviour in the studied sample.\n\n","PeriodicalId":18543,"journal":{"name":"Micro and Nanosystems","volume":"238 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural and Impedance Analysis of 0.7Pb(Mg1/3Nb2/3)O3- 0.3PbTiO3 Ceramic\",\"authors\":\"J. K. Mishra, Khusboo Agrawal, B. Behera\",\"doi\":\"10.2174/1876402913666210929125515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nSince (1-x)[Pb(Mg1/3Nb2/3)O3]-(x)PbTiO3 (PMN-PT) ceramic has high dielectric constant and piezoelectric coefficient, it has been widely investigated for profound applications in electro-optical devices, sensors, multilayer capacitors and actuators.\\n\\n\\n\\n\\nThe aim is to study the structural and electrical properties of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (0.7PMN-0.3PT) ceramic to understand the biphasic structural nature using Rietveld Refinement. Also, it characterises on the basis of electrical properties such as impedance and modulus to understand the relaxation process, type of conduction process as well as the role of grain and grain boundary resistance in the material. \\n\\n\\n\\n\\n 0.7PMN-0.3PT is synthesised by mixed oxide method using PbO, MgO, Nb2O5 and TiO2 as precursor materials. \\n\\n\\n\\n\\n The XRD data reveals the biphasic structure of tetragonal phase with the space group of P4mm and monoclinic phase with the space group of Pm. The complex impedance analysis clearly represents the effect of grain on the overall resistance and departs from normal Debye type behaviour. Also, the resistance is found to decrease with temperature, thereby confirming the semiconducting nature of the sample. The presence of long as well as short-range mobility of charge carriers is confirmed from the modulus and impedance analysis. The influence of long-range motion is observed at high temperature and of short-range motion at low temperatures.\\n\\n\\n\\n\\n XRD analysis confirmed the biphasic structure of M+T phase. The frequency-dependent modulus and impedance spectroscopy show the presence of a relaxation effect in the ceramic which is found to increase with temperature. The Nyquist plot shows that the resistance is decreased with temperature, thereby confirming the NTCR behaviour in the studied sample.\\n\\n\",\"PeriodicalId\":18543,\"journal\":{\"name\":\"Micro and Nanosystems\",\"volume\":\"238 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanosystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1876402913666210929125515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1876402913666210929125515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Structural and Impedance Analysis of 0.7Pb(Mg1/3Nb2/3)O3- 0.3PbTiO3 Ceramic
Since (1-x)[Pb(Mg1/3Nb2/3)O3]-(x)PbTiO3 (PMN-PT) ceramic has high dielectric constant and piezoelectric coefficient, it has been widely investigated for profound applications in electro-optical devices, sensors, multilayer capacitors and actuators.
The aim is to study the structural and electrical properties of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (0.7PMN-0.3PT) ceramic to understand the biphasic structural nature using Rietveld Refinement. Also, it characterises on the basis of electrical properties such as impedance and modulus to understand the relaxation process, type of conduction process as well as the role of grain and grain boundary resistance in the material.
0.7PMN-0.3PT is synthesised by mixed oxide method using PbO, MgO, Nb2O5 and TiO2 as precursor materials.
The XRD data reveals the biphasic structure of tetragonal phase with the space group of P4mm and monoclinic phase with the space group of Pm. The complex impedance analysis clearly represents the effect of grain on the overall resistance and departs from normal Debye type behaviour. Also, the resistance is found to decrease with temperature, thereby confirming the semiconducting nature of the sample. The presence of long as well as short-range mobility of charge carriers is confirmed from the modulus and impedance analysis. The influence of long-range motion is observed at high temperature and of short-range motion at low temperatures.
XRD analysis confirmed the biphasic structure of M+T phase. The frequency-dependent modulus and impedance spectroscopy show the presence of a relaxation effect in the ceramic which is found to increase with temperature. The Nyquist plot shows that the resistance is decreased with temperature, thereby confirming the NTCR behaviour in the studied sample.