普通和高强混凝土受压应力-应变关系数学模型的建立

IF 1.1 Q3 ENGINEERING, CIVIL
Wisam Hulail Sultan, D. Hamza
{"title":"普通和高强混凝土受压应力-应变关系数学模型的建立","authors":"Wisam Hulail Sultan, D. Hamza","doi":"10.2478/cee-2023-0011","DOIUrl":null,"url":null,"abstract":"Abstract The research includes a new model proposed for the stress-strain relationship of unconfined concrete in compression valid for normal and high strength concrete. A wide range of experimental data with varied lab circumstances has been used for fitting and other data for verifying the model. It is noted that the current model has a good agreement with the experimental data for both its ascending and descending branches in normal and high strength concrete. Depending on the mean of average values of experimental to calculated stresses, coefficient of variation, and difference ratio. Where values of the average experimental to calculated stresses ranged from 0.723 to 1.354 for 38 samples with a mean of 0.994, while the coefficient of variation values ranged from 16.099 to 48.562 with a mean of 27.704 % for these specimens. Also, difference ratio values ranged from 0.86 % to 31.804 % with a mean of 9.009 % for these specimens. The model gives the best results in comparison with other models.","PeriodicalId":42034,"journal":{"name":"Civil and Environmental Engineering","volume":"35 1","pages":"119 - 133"},"PeriodicalIF":1.1000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formulation of Mathematical Model for Stress-Strain Relationship of Normal and High Strength Concrete Under Compression\",\"authors\":\"Wisam Hulail Sultan, D. Hamza\",\"doi\":\"10.2478/cee-2023-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The research includes a new model proposed for the stress-strain relationship of unconfined concrete in compression valid for normal and high strength concrete. A wide range of experimental data with varied lab circumstances has been used for fitting and other data for verifying the model. It is noted that the current model has a good agreement with the experimental data for both its ascending and descending branches in normal and high strength concrete. Depending on the mean of average values of experimental to calculated stresses, coefficient of variation, and difference ratio. Where values of the average experimental to calculated stresses ranged from 0.723 to 1.354 for 38 samples with a mean of 0.994, while the coefficient of variation values ranged from 16.099 to 48.562 with a mean of 27.704 % for these specimens. Also, difference ratio values ranged from 0.86 % to 31.804 % with a mean of 9.009 % for these specimens. The model gives the best results in comparison with other models.\",\"PeriodicalId\":42034,\"journal\":{\"name\":\"Civil and Environmental Engineering\",\"volume\":\"35 1\",\"pages\":\"119 - 133\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Civil and Environmental Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/cee-2023-0011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil and Environmental Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cee-2023-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

摘要本研究提出了一种新的无侧限混凝土压缩应力-应变关系模型,适用于普通混凝土和高强度混凝土。各种实验室环境下的大量实验数据已用于拟合,其他数据用于验证模型。值得注意的是,目前的模型与正常和高强度混凝土中其上升和下降分支的实验数据都有很好的一致性。取决于实验应力与计算应力的平均值、变异系数和差值比的平均值。其中,38个样本的平均实验应力值与计算应力值在0.723至1.354之间,平均值为0.994,而这些样本的变异系数值在16.099至48.562之间,平均为27.704%。此外,这些样本的差异比值在0.86%至31.804%之间,平均值为9.009%。与其他模型相比,该模型给出了最好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Formulation of Mathematical Model for Stress-Strain Relationship of Normal and High Strength Concrete Under Compression
Abstract The research includes a new model proposed for the stress-strain relationship of unconfined concrete in compression valid for normal and high strength concrete. A wide range of experimental data with varied lab circumstances has been used for fitting and other data for verifying the model. It is noted that the current model has a good agreement with the experimental data for both its ascending and descending branches in normal and high strength concrete. Depending on the mean of average values of experimental to calculated stresses, coefficient of variation, and difference ratio. Where values of the average experimental to calculated stresses ranged from 0.723 to 1.354 for 38 samples with a mean of 0.994, while the coefficient of variation values ranged from 16.099 to 48.562 with a mean of 27.704 % for these specimens. Also, difference ratio values ranged from 0.86 % to 31.804 % with a mean of 9.009 % for these specimens. The model gives the best results in comparison with other models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
58.30%
发文量
69
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信