对数1-基元的单配对

IF 0.8 Q2 MATHEMATICS
Jonathan Wise
{"title":"对数1-基元的单配对","authors":"Jonathan Wise","doi":"10.2140/tunis.2022.4.587","DOIUrl":null,"url":null,"abstract":"We describe a 3-step filtration on all logarithmic abelian varieties with constant degeneration. The obstruction to descending this filtration, as a variegated extension, from logarithmic geometry to algebraic geometry is encoded in a bilinear pairing valued in the characteristic monoid of the base. This pairing is realized as the monodromy pairing in p-adic, l-adic, and Betti cohomolgies, and recovers the Picard-Lefschetz transformation in the case of Jacobians. The Hodge realization of the filtration is the monodromy weight filtration on the limit mixed Hodge structure.","PeriodicalId":36030,"journal":{"name":"Tunisian Journal of Mathematics","volume":"20 5","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2019-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The monodromy pairing for logarithmic\\n1-motifs\",\"authors\":\"Jonathan Wise\",\"doi\":\"10.2140/tunis.2022.4.587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a 3-step filtration on all logarithmic abelian varieties with constant degeneration. The obstruction to descending this filtration, as a variegated extension, from logarithmic geometry to algebraic geometry is encoded in a bilinear pairing valued in the characteristic monoid of the base. This pairing is realized as the monodromy pairing in p-adic, l-adic, and Betti cohomolgies, and recovers the Picard-Lefschetz transformation in the case of Jacobians. The Hodge realization of the filtration is the monodromy weight filtration on the limit mixed Hodge structure.\",\"PeriodicalId\":36030,\"journal\":{\"name\":\"Tunisian Journal of Mathematics\",\"volume\":\"20 5\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tunisian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/tunis.2022.4.587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunisian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/tunis.2022.4.587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了对所有具有恒定退化的对数阿贝尔品种的三步过滤。作为从对数几何到代数几何的一个杂色扩展,这种过滤的下降障碍被编码在基的特征半群中的双线性配对中。该配对在p-adic、l-adic和Betti上同调中被实现为单调配对,并在Jacobians的情况下恢复了Picard-Lefschetz变换。过滤的Hodge实现是在极限混合Hodge结构上的单重过滤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The monodromy pairing for logarithmic 1-motifs
We describe a 3-step filtration on all logarithmic abelian varieties with constant degeneration. The obstruction to descending this filtration, as a variegated extension, from logarithmic geometry to algebraic geometry is encoded in a bilinear pairing valued in the characteristic monoid of the base. This pairing is realized as the monodromy pairing in p-adic, l-adic, and Betti cohomolgies, and recovers the Picard-Lefschetz transformation in the case of Jacobians. The Hodge realization of the filtration is the monodromy weight filtration on the limit mixed Hodge structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tunisian Journal of Mathematics
Tunisian Journal of Mathematics Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信