印度沿海城市PΜ2.5物理化学特征的空间变化及其相关的健康风险

IF 3 4区 地球科学 Q2 ENVIRONMENTAL SCIENCES
Shruti Tripathi, Abhishek Chakraborty, Debayan Mandal
{"title":"印度沿海城市PΜ2.5物理化学特征的空间变化及其相关的健康风险","authors":"Shruti Tripathi,&nbsp;Abhishek Chakraborty,&nbsp;Debayan Mandal","doi":"10.1007/s10874-023-09448-5","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates the chemical composition of Particulate Matter, Organic Carbon (OC), and Elemental Carbon (EC) in residential and traffic sites in Mumbai. The average PM<sub>2.5</sub> and PM<sub>10</sub> concentrations at the traffic site (Sakinaka) were 240 µg/m<sup>3</sup> and 424 µg/m<sup>3</sup>, respectively. The observed levels of OC were 35 µg/m<sup>3</sup>, 22 µg/m<sup>3</sup>, and 15.5 µg/m<sup>3</sup> at Sakinaka junction (high-density traffic), YP-Gate (low-density traffic), and Hostel Premise (Residential), respectively. The average OC/EC ratio value was high (4.5) at the residential site, indicating contributions from stationary combustion sources and secondary production of carbonaceous species to OC. The residential site has a higher percentage of low volatile OC fraction (57%) in total OC than the traffic sites. On the other hand, Sakinaka has a higher percentage of highly volatile OC fractions (36%) in total OC. The crustal-originated metals were dominating in all areas, but the concentration of metals from anthropogenic sources was highest at Sakinaka, i.e., As (381 ng/m<sup>3</sup>), Pb (352 ng/m<sup>3</sup>), Zn (679 ng/m<sup>3</sup>). The K/Al, Ca/Al, Mg/Al, and Fe/Al ratios were high in all the samples compared to the crustal ratio indicating biomass burning and traffic emission sources of these metals. PM originating from traffic was more enriched with heavy metals that are toxic to human health, increasing cancer risks (CR) through inhalation. The hazard quotient was above 1 at all the locations, and CR was above 1 × 10<sup>− 4,</sup> causing health risks. According to the dosimetry model, more PM was deposited in the lungs of traffic location occupants through inhalation, increasing the cancerous risk.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"80 3","pages":"211 - 226"},"PeriodicalIF":3.0000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial variations in physico-chemical characteristics of PΜ2.5 in an urban coastal city of India and associated health risks\",\"authors\":\"Shruti Tripathi,&nbsp;Abhishek Chakraborty,&nbsp;Debayan Mandal\",\"doi\":\"10.1007/s10874-023-09448-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper investigates the chemical composition of Particulate Matter, Organic Carbon (OC), and Elemental Carbon (EC) in residential and traffic sites in Mumbai. The average PM<sub>2.5</sub> and PM<sub>10</sub> concentrations at the traffic site (Sakinaka) were 240 µg/m<sup>3</sup> and 424 µg/m<sup>3</sup>, respectively. The observed levels of OC were 35 µg/m<sup>3</sup>, 22 µg/m<sup>3</sup>, and 15.5 µg/m<sup>3</sup> at Sakinaka junction (high-density traffic), YP-Gate (low-density traffic), and Hostel Premise (Residential), respectively. The average OC/EC ratio value was high (4.5) at the residential site, indicating contributions from stationary combustion sources and secondary production of carbonaceous species to OC. The residential site has a higher percentage of low volatile OC fraction (57%) in total OC than the traffic sites. On the other hand, Sakinaka has a higher percentage of highly volatile OC fractions (36%) in total OC. The crustal-originated metals were dominating in all areas, but the concentration of metals from anthropogenic sources was highest at Sakinaka, i.e., As (381 ng/m<sup>3</sup>), Pb (352 ng/m<sup>3</sup>), Zn (679 ng/m<sup>3</sup>). The K/Al, Ca/Al, Mg/Al, and Fe/Al ratios were high in all the samples compared to the crustal ratio indicating biomass burning and traffic emission sources of these metals. PM originating from traffic was more enriched with heavy metals that are toxic to human health, increasing cancer risks (CR) through inhalation. The hazard quotient was above 1 at all the locations, and CR was above 1 × 10<sup>− 4,</sup> causing health risks. According to the dosimetry model, more PM was deposited in the lungs of traffic location occupants through inhalation, increasing the cancerous risk.</p></div>\",\"PeriodicalId\":611,\"journal\":{\"name\":\"Journal of Atmospheric Chemistry\",\"volume\":\"80 3\",\"pages\":\"211 - 226\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric Chemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10874-023-09448-5\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric Chemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10874-023-09448-5","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文调查了孟买居民区和交通场所的颗粒物、有机碳(OC)和元素碳(EC)的化学组成。交通站点(Sakinaka) PM2.5和PM10的平均浓度分别为240µg/m3和424µg/m3。Sakinaka路口(高密度交通)、YP-Gate路口(低密度交通)和Hostel Premise(住宅)的OC浓度分别为35µg/m3、22µg/m3和15.5µg/m3。住区OC/EC均值较高(4.5),表明固定燃烧源和含碳物种次生产物对OC的贡献。住宅用地的低挥发性有机碳占总有机碳的比例(57%)高于交通用地。另一方面,Sakinaka的高挥发性OC分数占总OC的比例较高(36%)。各地区均以地壳源金属为主,但Sakinaka地区人为源金属浓度最高,为As (381 ng/m3)、Pb (352 ng/m3)、Zn (679 ng/m3)。所有样品的K/Al、Ca/Al、Mg/Al和Fe/Al比值均高于地壳比值,表明这些金属是生物质燃烧和交通排放源。来自交通的PM更富含对人体健康有毒的重金属,通过吸入增加癌症风险。所有地点的危害商均大于1,CR大于1 × 10−4,存在健康风险。剂量学模型显示,交通位置乘员通过吸入在肺部沉积了更多的PM,增加了癌变风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Spatial variations in physico-chemical characteristics of PΜ2.5 in an urban coastal city of India and associated health risks

Spatial variations in physico-chemical characteristics of PΜ2.5 in an urban coastal city of India and associated health risks

This paper investigates the chemical composition of Particulate Matter, Organic Carbon (OC), and Elemental Carbon (EC) in residential and traffic sites in Mumbai. The average PM2.5 and PM10 concentrations at the traffic site (Sakinaka) were 240 µg/m3 and 424 µg/m3, respectively. The observed levels of OC were 35 µg/m3, 22 µg/m3, and 15.5 µg/m3 at Sakinaka junction (high-density traffic), YP-Gate (low-density traffic), and Hostel Premise (Residential), respectively. The average OC/EC ratio value was high (4.5) at the residential site, indicating contributions from stationary combustion sources and secondary production of carbonaceous species to OC. The residential site has a higher percentage of low volatile OC fraction (57%) in total OC than the traffic sites. On the other hand, Sakinaka has a higher percentage of highly volatile OC fractions (36%) in total OC. The crustal-originated metals were dominating in all areas, but the concentration of metals from anthropogenic sources was highest at Sakinaka, i.e., As (381 ng/m3), Pb (352 ng/m3), Zn (679 ng/m3). The K/Al, Ca/Al, Mg/Al, and Fe/Al ratios were high in all the samples compared to the crustal ratio indicating biomass burning and traffic emission sources of these metals. PM originating from traffic was more enriched with heavy metals that are toxic to human health, increasing cancer risks (CR) through inhalation. The hazard quotient was above 1 at all the locations, and CR was above 1 × 10− 4, causing health risks. According to the dosimetry model, more PM was deposited in the lungs of traffic location occupants through inhalation, increasing the cancerous risk.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Atmospheric Chemistry
Journal of Atmospheric Chemistry 地学-环境科学
CiteScore
4.60
自引率
5.00%
发文量
16
审稿时长
7.5 months
期刊介绍: The Journal of Atmospheric Chemistry is devoted to the study of the chemistry of the Earth''s atmosphere, the emphasis being laid on the region below about 100 km. The strongly interdisciplinary nature of atmospheric chemistry means that it embraces a great variety of sciences, but the journal concentrates on the following topics: Observational, interpretative and modelling studies of the composition of air and precipitation and the physiochemical processes in the Earth''s atmosphere, excluding air pollution problems of local importance only. The role of the atmosphere in biogeochemical cycles; the chemical interaction of the oceans, land surface and biosphere with the atmosphere. Laboratory studies of the mechanics in homogeneous and heterogeneous transformation processes in the atmosphere. Descriptions of major advances in instrumentation developed for the measurement of atmospheric composition and chemical properties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信