非线性集成滤波的耦合技术

IF 10.8 1区 数学 Q1 MATHEMATICS, APPLIED
SIAM Review Pub Date : 2019-06-30 DOI:10.1137/20m1312204
Alessio Spantini, R. Baptista, Y. Marzouk
{"title":"非线性集成滤波的耦合技术","authors":"Alessio Spantini, R. Baptista, Y. Marzouk","doi":"10.1137/20m1312204","DOIUrl":null,"url":null,"abstract":"We consider filtering in high-dimensional non-Gaussian state-space models with intractable transition kernels, nonlinear and possibly chaotic dynamics, and sparse observations in space and time. We propose a novel filtering methodology that harnesses transportation of measures, convex optimization, and ideas from probabilistic graphical models to yield robust ensemble approximations of the filtering distribution in high dimensions. Our approach can be understood as the natural generalization of the ensemble Kalman filter (EnKF) to nonlinear updates, using stochastic or deterministic couplings. The use of nonlinear updates can reduce the intrinsic bias of the EnKF at a marginal increase in computational cost. We avoid any form of importance sampling and introduce non-Gaussian localization approaches for dimension scalability. Our framework achieves state-of-the-art tracking performance on challenging configurations of the Lorenz-96 model in the chaotic regime.","PeriodicalId":49525,"journal":{"name":"SIAM Review","volume":" 19","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2019-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"Coupling Techniques for Nonlinear Ensemble Filtering\",\"authors\":\"Alessio Spantini, R. Baptista, Y. Marzouk\",\"doi\":\"10.1137/20m1312204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider filtering in high-dimensional non-Gaussian state-space models with intractable transition kernels, nonlinear and possibly chaotic dynamics, and sparse observations in space and time. We propose a novel filtering methodology that harnesses transportation of measures, convex optimization, and ideas from probabilistic graphical models to yield robust ensemble approximations of the filtering distribution in high dimensions. Our approach can be understood as the natural generalization of the ensemble Kalman filter (EnKF) to nonlinear updates, using stochastic or deterministic couplings. The use of nonlinear updates can reduce the intrinsic bias of the EnKF at a marginal increase in computational cost. We avoid any form of importance sampling and introduce non-Gaussian localization approaches for dimension scalability. Our framework achieves state-of-the-art tracking performance on challenging configurations of the Lorenz-96 model in the chaotic regime.\",\"PeriodicalId\":49525,\"journal\":{\"name\":\"SIAM Review\",\"volume\":\" 19\",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2019-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Review\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/20m1312204\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Review","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/20m1312204","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 53

摘要

我们考虑在高维非高斯状态空间模型中滤波,该模型具有难以处理的转移核,非线性和可能的混沌动力学,以及空间和时间上的稀疏观测。我们提出了一种新的滤波方法,该方法利用测度的传递、凸优化和概率图模型的思想来产生高维滤波分布的鲁棒集成近似。我们的方法可以理解为集成卡尔曼滤波器(EnKF)对非线性更新的自然推广,使用随机或确定性耦合。使用非线性更新可以在计算成本边际增加的情况下减少EnKF的固有偏差。我们避免了任何形式的重要抽样,并引入了非高斯定位方法来实现维度的可扩展性。我们的框架在混沌状态下对Lorenz-96模型的挑战性配置实现了最先进的跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coupling Techniques for Nonlinear Ensemble Filtering
We consider filtering in high-dimensional non-Gaussian state-space models with intractable transition kernels, nonlinear and possibly chaotic dynamics, and sparse observations in space and time. We propose a novel filtering methodology that harnesses transportation of measures, convex optimization, and ideas from probabilistic graphical models to yield robust ensemble approximations of the filtering distribution in high dimensions. Our approach can be understood as the natural generalization of the ensemble Kalman filter (EnKF) to nonlinear updates, using stochastic or deterministic couplings. The use of nonlinear updates can reduce the intrinsic bias of the EnKF at a marginal increase in computational cost. We avoid any form of importance sampling and introduce non-Gaussian localization approaches for dimension scalability. Our framework achieves state-of-the-art tracking performance on challenging configurations of the Lorenz-96 model in the chaotic regime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SIAM Review
SIAM Review 数学-应用数学
CiteScore
16.90
自引率
0.00%
发文量
50
期刊介绍: Survey and Review feature papers that provide an integrative and current viewpoint on important topics in applied or computational mathematics and scientific computing. These papers aim to offer a comprehensive perspective on the subject matter. Research Spotlights publish concise research papers in applied and computational mathematics that are of interest to a wide range of readers in SIAM Review. The papers in this section present innovative ideas that are clearly explained and motivated. They stand out from regular publications in specific SIAM journals due to their accessibility and potential for widespread and long-lasting influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信