拓扑群中的高同伦规范性

IF 0.8 2区 数学 Q2 MATHEMATICS
Mitsunobu Tsutaya
{"title":"拓扑群中的高同伦规范性","authors":"Mitsunobu Tsutaya","doi":"10.1112/topo.12282","DOIUrl":null,"url":null,"abstract":"<p>The purpose of this paper is to introduce <math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mi>k</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>ℓ</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$N_k(\\ell )$</annotation>\n </semantics></math>-maps (<math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>⩽</mo>\n <mi>k</mi>\n <mo>,</mo>\n <mi>ℓ</mi>\n <mo>⩽</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$1\\leqslant k,\\ell \\leqslant \\infty$</annotation>\n </semantics></math>), which describe higher homotopy normalities, and to study their basic properties and examples. An <math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mi>k</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>ℓ</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$N_k(\\ell )$</annotation>\n </semantics></math>-map is defined with higher homotopical conditions. It is shown that a homomorphism is an <math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mi>k</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>ℓ</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$N_k(\\ell )$</annotation>\n </semantics></math>-map if and only if there exists fiberwise maps between fiberwise projective spaces with some properties. Also, the homotopy quotient of an <math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mi>k</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$N_k(k)$</annotation>\n </semantics></math>-map is shown to be an <math>\n <semantics>\n <mi>H</mi>\n <annotation>$H$</annotation>\n </semantics></math>-space if its LS category is not greater than <math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>. As an application, we investigate when the inclusions <math>\n <semantics>\n <mrow>\n <mo>SU</mo>\n <mo>(</mo>\n <mi>m</mi>\n <mo>)</mo>\n <mo>→</mo>\n <mo>SU</mo>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{SU}(m)\\rightarrow \\operatorname{SU}(n)$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <mo>SO</mo>\n <mo>(</mo>\n <mn>2</mn>\n <mi>m</mi>\n <mo>+</mo>\n <mn>1</mn>\n <mo>)</mo>\n <mo>→</mo>\n <mo>SO</mo>\n <mo>(</mo>\n <mn>2</mn>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{SO}(2m+1)\\rightarrow \\operatorname{SO}(2n+1)$</annotation>\n </semantics></math> are <math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-locally <math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mi>k</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>ℓ</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$N_k(\\ell )$</annotation>\n </semantics></math>-maps.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"16 1","pages":"234-263"},"PeriodicalIF":0.8000,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher homotopy normalities in topological groups\",\"authors\":\"Mitsunobu Tsutaya\",\"doi\":\"10.1112/topo.12282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The purpose of this paper is to introduce <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mi>k</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>ℓ</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$N_k(\\\\ell )$</annotation>\\n </semantics></math>-maps (<math>\\n <semantics>\\n <mrow>\\n <mn>1</mn>\\n <mo>⩽</mo>\\n <mi>k</mi>\\n <mo>,</mo>\\n <mi>ℓ</mi>\\n <mo>⩽</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$1\\\\leqslant k,\\\\ell \\\\leqslant \\\\infty$</annotation>\\n </semantics></math>), which describe higher homotopy normalities, and to study their basic properties and examples. An <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mi>k</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>ℓ</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$N_k(\\\\ell )$</annotation>\\n </semantics></math>-map is defined with higher homotopical conditions. It is shown that a homomorphism is an <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mi>k</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>ℓ</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$N_k(\\\\ell )$</annotation>\\n </semantics></math>-map if and only if there exists fiberwise maps between fiberwise projective spaces with some properties. Also, the homotopy quotient of an <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mi>k</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>k</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$N_k(k)$</annotation>\\n </semantics></math>-map is shown to be an <math>\\n <semantics>\\n <mi>H</mi>\\n <annotation>$H$</annotation>\\n </semantics></math>-space if its LS category is not greater than <math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math>. As an application, we investigate when the inclusions <math>\\n <semantics>\\n <mrow>\\n <mo>SU</mo>\\n <mo>(</mo>\\n <mi>m</mi>\\n <mo>)</mo>\\n <mo>→</mo>\\n <mo>SU</mo>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\operatorname{SU}(m)\\\\rightarrow \\\\operatorname{SU}(n)$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mrow>\\n <mo>SO</mo>\\n <mo>(</mo>\\n <mn>2</mn>\\n <mi>m</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n <mo>→</mo>\\n <mo>SO</mo>\\n <mo>(</mo>\\n <mn>2</mn>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\operatorname{SO}(2m+1)\\\\rightarrow \\\\operatorname{SO}(2n+1)$</annotation>\\n </semantics></math> are <math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math>-locally <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mi>k</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>ℓ</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$N_k(\\\\ell )$</annotation>\\n </semantics></math>-maps.</p>\",\"PeriodicalId\":56114,\"journal\":{\"name\":\"Journal of Topology\",\"volume\":\"16 1\",\"pages\":\"234-263\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12282\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12282","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是介绍Nk(ℓ)$N_ k(\ell)$-maps(1⩽k,ℓ⩽∞$1\leqslant k,\ell\leqslant\infty$),并研究了它们的基本性质和例子。An Nk(ℓ)$N_k(\ell)$-map是用更高的同位条件定义的。证明了同态是Nk(ℓ)$N_k(\ell)$-map当且仅当在具有某些性质的纤维状投影空间之间存在纤维状映射。此外,如果Nk(k)$N_k(k)$映射的LS范畴不大于k$k$,则其同伦商被证明是H$H$空间。作为一个应用,我们研究了当夹杂物SU(m)→SU(n)$\运算符名称{SU}(m)\rightarrow\运算符名称{SU}(n)$和SO(2m+1)→SO(2n+1)$\运算符名称{SO}(2m+1)\rightarrow\运算符名称{SO}(ℓ)$N_k(\ell)$映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Higher homotopy normalities in topological groups

The purpose of this paper is to introduce N k ( ) $N_k(\ell )$ -maps ( 1 k , $1\leqslant k,\ell \leqslant \infty$ ), which describe higher homotopy normalities, and to study their basic properties and examples. An N k ( ) $N_k(\ell )$ -map is defined with higher homotopical conditions. It is shown that a homomorphism is an N k ( ) $N_k(\ell )$ -map if and only if there exists fiberwise maps between fiberwise projective spaces with some properties. Also, the homotopy quotient of an N k ( k ) $N_k(k)$ -map is shown to be an H $H$ -space if its LS category is not greater than k $k$ . As an application, we investigate when the inclusions SU ( m ) SU ( n ) $\operatorname{SU}(m)\rightarrow \operatorname{SU}(n)$ and SO ( 2 m + 1 ) SO ( 2 n + 1 ) $\operatorname{SO}(2m+1)\rightarrow \operatorname{SO}(2n+1)$ are p $p$ -locally N k ( ) $N_k(\ell )$ -maps.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Topology
Journal of Topology 数学-数学
CiteScore
2.00
自引率
9.10%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Journal of Topology publishes papers of high quality and significance in topology, geometry and adjacent areas of mathematics. Interesting, important and often unexpected links connect topology and geometry with many other parts of mathematics, and the editors welcome submissions on exciting new advances concerning such links, as well as those in the core subject areas of the journal. The Journal of Topology was founded in 2008. It is published quarterly with articles published individually online prior to appearing in a printed issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信