拓扑群中的高同伦规范性

Pub Date : 2023-02-17 DOI:10.1112/topo.12282
Mitsunobu Tsutaya
{"title":"拓扑群中的高同伦规范性","authors":"Mitsunobu Tsutaya","doi":"10.1112/topo.12282","DOIUrl":null,"url":null,"abstract":"<p>The purpose of this paper is to introduce <math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mi>k</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>ℓ</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$N_k(\\ell )$</annotation>\n </semantics></math>-maps (<math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>⩽</mo>\n <mi>k</mi>\n <mo>,</mo>\n <mi>ℓ</mi>\n <mo>⩽</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$1\\leqslant k,\\ell \\leqslant \\infty$</annotation>\n </semantics></math>), which describe higher homotopy normalities, and to study their basic properties and examples. An <math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mi>k</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>ℓ</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$N_k(\\ell )$</annotation>\n </semantics></math>-map is defined with higher homotopical conditions. It is shown that a homomorphism is an <math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mi>k</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>ℓ</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$N_k(\\ell )$</annotation>\n </semantics></math>-map if and only if there exists fiberwise maps between fiberwise projective spaces with some properties. Also, the homotopy quotient of an <math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mi>k</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$N_k(k)$</annotation>\n </semantics></math>-map is shown to be an <math>\n <semantics>\n <mi>H</mi>\n <annotation>$H$</annotation>\n </semantics></math>-space if its LS category is not greater than <math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>. As an application, we investigate when the inclusions <math>\n <semantics>\n <mrow>\n <mo>SU</mo>\n <mo>(</mo>\n <mi>m</mi>\n <mo>)</mo>\n <mo>→</mo>\n <mo>SU</mo>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{SU}(m)\\rightarrow \\operatorname{SU}(n)$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <mo>SO</mo>\n <mo>(</mo>\n <mn>2</mn>\n <mi>m</mi>\n <mo>+</mo>\n <mn>1</mn>\n <mo>)</mo>\n <mo>→</mo>\n <mo>SO</mo>\n <mo>(</mo>\n <mn>2</mn>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{SO}(2m+1)\\rightarrow \\operatorname{SO}(2n+1)$</annotation>\n </semantics></math> are <math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-locally <math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mi>k</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>ℓ</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$N_k(\\ell )$</annotation>\n </semantics></math>-maps.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher homotopy normalities in topological groups\",\"authors\":\"Mitsunobu Tsutaya\",\"doi\":\"10.1112/topo.12282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The purpose of this paper is to introduce <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mi>k</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>ℓ</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$N_k(\\\\ell )$</annotation>\\n </semantics></math>-maps (<math>\\n <semantics>\\n <mrow>\\n <mn>1</mn>\\n <mo>⩽</mo>\\n <mi>k</mi>\\n <mo>,</mo>\\n <mi>ℓ</mi>\\n <mo>⩽</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$1\\\\leqslant k,\\\\ell \\\\leqslant \\\\infty$</annotation>\\n </semantics></math>), which describe higher homotopy normalities, and to study their basic properties and examples. An <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mi>k</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>ℓ</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$N_k(\\\\ell )$</annotation>\\n </semantics></math>-map is defined with higher homotopical conditions. It is shown that a homomorphism is an <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mi>k</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>ℓ</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$N_k(\\\\ell )$</annotation>\\n </semantics></math>-map if and only if there exists fiberwise maps between fiberwise projective spaces with some properties. Also, the homotopy quotient of an <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mi>k</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>k</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$N_k(k)$</annotation>\\n </semantics></math>-map is shown to be an <math>\\n <semantics>\\n <mi>H</mi>\\n <annotation>$H$</annotation>\\n </semantics></math>-space if its LS category is not greater than <math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math>. As an application, we investigate when the inclusions <math>\\n <semantics>\\n <mrow>\\n <mo>SU</mo>\\n <mo>(</mo>\\n <mi>m</mi>\\n <mo>)</mo>\\n <mo>→</mo>\\n <mo>SU</mo>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\operatorname{SU}(m)\\\\rightarrow \\\\operatorname{SU}(n)$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mrow>\\n <mo>SO</mo>\\n <mo>(</mo>\\n <mn>2</mn>\\n <mi>m</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n <mo>→</mo>\\n <mo>SO</mo>\\n <mo>(</mo>\\n <mn>2</mn>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\operatorname{SO}(2m+1)\\\\rightarrow \\\\operatorname{SO}(2n+1)$</annotation>\\n </semantics></math> are <math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math>-locally <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mi>k</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>ℓ</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$N_k(\\\\ell )$</annotation>\\n </semantics></math>-maps.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是介绍Nk(ℓ)$N_ k(\ell)$-maps(1⩽k,ℓ⩽∞$1\leqslant k,\ell\leqslant\infty$),并研究了它们的基本性质和例子。An Nk(ℓ)$N_k(\ell)$-map是用更高的同位条件定义的。证明了同态是Nk(ℓ)$N_k(\ell)$-map当且仅当在具有某些性质的纤维状投影空间之间存在纤维状映射。此外,如果Nk(k)$N_k(k)$映射的LS范畴不大于k$k$,则其同伦商被证明是H$H$空间。作为一个应用,我们研究了当夹杂物SU(m)→SU(n)$\运算符名称{SU}(m)\rightarrow\运算符名称{SU}(n)$和SO(2m+1)→SO(2n+1)$\运算符名称{SO}(2m+1)\rightarrow\运算符名称{SO}(ℓ)$N_k(\ell)$映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Higher homotopy normalities in topological groups

The purpose of this paper is to introduce N k ( ) $N_k(\ell )$ -maps ( 1 k , $1\leqslant k,\ell \leqslant \infty$ ), which describe higher homotopy normalities, and to study their basic properties and examples. An N k ( ) $N_k(\ell )$ -map is defined with higher homotopical conditions. It is shown that a homomorphism is an N k ( ) $N_k(\ell )$ -map if and only if there exists fiberwise maps between fiberwise projective spaces with some properties. Also, the homotopy quotient of an N k ( k ) $N_k(k)$ -map is shown to be an H $H$ -space if its LS category is not greater than k $k$ . As an application, we investigate when the inclusions SU ( m ) SU ( n ) $\operatorname{SU}(m)\rightarrow \operatorname{SU}(n)$ and SO ( 2 m + 1 ) SO ( 2 n + 1 ) $\operatorname{SO}(2m+1)\rightarrow \operatorname{SO}(2n+1)$ are p $p$ -locally N k ( ) $N_k(\ell )$ -maps.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信