Swati Panda, Sugato Hajra, Hang Gyeom Kim, Haejin Jeong, P. G. R. Achary, Seonki Hong, Bhaskar Dudem, S. Ravi P. Silva, Venkateswaran Vivekananthan and Hoe Joon Kim
{"title":"使用可生物降解的自供电生物传感器进行基于碳水化合物-蛋白质相互作用的致病菌检测。","authors":"Swati Panda, Sugato Hajra, Hang Gyeom Kim, Haejin Jeong, P. G. R. Achary, Seonki Hong, Bhaskar Dudem, S. Ravi P. Silva, Venkateswaran Vivekananthan and Hoe Joon Kim","doi":"10.1039/D3TB01820B","DOIUrl":null,"url":null,"abstract":"<p >Battery-free and biodegradable sensors can detect biological elements in remote areas. The triboelectric nanogenerator (TENG) can potentially eliminate the need for a battery by simply converting the abundant vibrations from nature or human motion into electricity. A biodegradable sensor system integrated with TENG to detect commonly found disease-causing bacteria (<em>E. coli</em>) in the environment is showcased herein. In this system, <small>D</small>-mannose functionalized 3D printed polylactic acid (PLA) with the brush-painted silver electrode was used to detect <em>E. coli</em> by a simple carbohydrate–protein interaction mechanism. The adsorption capacity of <small>D</small>-mannose is generally altered by varying the concentration of <em>E. coli</em> resulting in changes in resistance. Thus, the presented biosensor can detect bacterial concentrations by monitoring the output current. The PLA TENG generates an output of 70 V, 800 nA, and 22 nC, respectively. In addition, tap water and unpasteurized milk samples are tested for detecting bacteria, and the output is measured at 6 μA and 5 μA, respectively. Further, the biosensor was tested for biodegradability in soil compost by maintaining constant temperature and humidity. This study not only proposes an efficient and fast method for screening <em>E. coli</em> but also gives important insights into the ability to degrade and long-term reliability of TENG-based sensor platforms.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 42","pages":" 10147-10157"},"PeriodicalIF":6.1000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbohydrate–protein interaction-based detection of pathogenic bacteria using a biodegradable self-powered biosensor†\",\"authors\":\"Swati Panda, Sugato Hajra, Hang Gyeom Kim, Haejin Jeong, P. G. R. Achary, Seonki Hong, Bhaskar Dudem, S. Ravi P. Silva, Venkateswaran Vivekananthan and Hoe Joon Kim\",\"doi\":\"10.1039/D3TB01820B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Battery-free and biodegradable sensors can detect biological elements in remote areas. The triboelectric nanogenerator (TENG) can potentially eliminate the need for a battery by simply converting the abundant vibrations from nature or human motion into electricity. A biodegradable sensor system integrated with TENG to detect commonly found disease-causing bacteria (<em>E. coli</em>) in the environment is showcased herein. In this system, <small>D</small>-mannose functionalized 3D printed polylactic acid (PLA) with the brush-painted silver electrode was used to detect <em>E. coli</em> by a simple carbohydrate–protein interaction mechanism. The adsorption capacity of <small>D</small>-mannose is generally altered by varying the concentration of <em>E. coli</em> resulting in changes in resistance. Thus, the presented biosensor can detect bacterial concentrations by monitoring the output current. The PLA TENG generates an output of 70 V, 800 nA, and 22 nC, respectively. In addition, tap water and unpasteurized milk samples are tested for detecting bacteria, and the output is measured at 6 μA and 5 μA, respectively. Further, the biosensor was tested for biodegradability in soil compost by maintaining constant temperature and humidity. This study not only proposes an efficient and fast method for screening <em>E. coli</em> but also gives important insights into the ability to degrade and long-term reliability of TENG-based sensor platforms.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":\" 42\",\"pages\":\" 10147-10157\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/tb/d3tb01820b\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/tb/d3tb01820b","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Carbohydrate–protein interaction-based detection of pathogenic bacteria using a biodegradable self-powered biosensor†
Battery-free and biodegradable sensors can detect biological elements in remote areas. The triboelectric nanogenerator (TENG) can potentially eliminate the need for a battery by simply converting the abundant vibrations from nature or human motion into electricity. A biodegradable sensor system integrated with TENG to detect commonly found disease-causing bacteria (E. coli) in the environment is showcased herein. In this system, D-mannose functionalized 3D printed polylactic acid (PLA) with the brush-painted silver electrode was used to detect E. coli by a simple carbohydrate–protein interaction mechanism. The adsorption capacity of D-mannose is generally altered by varying the concentration of E. coli resulting in changes in resistance. Thus, the presented biosensor can detect bacterial concentrations by monitoring the output current. The PLA TENG generates an output of 70 V, 800 nA, and 22 nC, respectively. In addition, tap water and unpasteurized milk samples are tested for detecting bacteria, and the output is measured at 6 μA and 5 μA, respectively. Further, the biosensor was tested for biodegradability in soil compost by maintaining constant temperature and humidity. This study not only proposes an efficient and fast method for screening E. coli but also gives important insights into the ability to degrade and long-term reliability of TENG-based sensor platforms.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices