{"title":"基于组成噬菌体的生理特性,定制用于大肠杆菌长期裂解的高效噬菌体鸡尾酒。","authors":"Tomoyoshi Kaneko, Toshifumi Osaka, Satoshi Tsuneda","doi":"10.1089/phage.2023.0016","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Bacteriophage (phage) therapy has regained attention as an alternative to antimicrobial agents for eliminating bacteria; however, the emergence of phage-resistant bacteria during the therapy is a major concern. One method to control this emergence is to create a cocktail composed of multiple phages.</p><p><strong>Materials and methods: </strong>In this study, we isolated 28 phages infecting <i>Escherichia coli</i> and evaluated their bacteriolysis (lysis) activity, lytic spectrum, adsorption rate constant, burst size, and titer of a 1-day incubation, followed by clustering of the phages based on these physiological characteristics.</p><p><strong>Results: </strong>The variation in lysis onset time and duration was more significant for cocktails of phages from different clusters than for phage cocktails from the same cluster.</p><p><strong>Conclusions: </strong>This suggests that a combination of phages with different physiological characteristics is necessary to create a cocktail that rapidly and continuously lyses bacteria over a prolonged duration while suppressing the emergence of resistant bacterial strains.</p>","PeriodicalId":74428,"journal":{"name":"PHAGE (New Rochelle, N.Y.)","volume":"4 3","pages":"128-135"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574527/pdf/phage.2023.0016.pdf","citationCount":"0","resultStr":"{\"title\":\"Tailoring Effective Phage Cocktails for Long-Term Lysis of <i>Escherichia coli</i> Based on Physiological Properties of Constituent Phages.\",\"authors\":\"Tomoyoshi Kaneko, Toshifumi Osaka, Satoshi Tsuneda\",\"doi\":\"10.1089/phage.2023.0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Bacteriophage (phage) therapy has regained attention as an alternative to antimicrobial agents for eliminating bacteria; however, the emergence of phage-resistant bacteria during the therapy is a major concern. One method to control this emergence is to create a cocktail composed of multiple phages.</p><p><strong>Materials and methods: </strong>In this study, we isolated 28 phages infecting <i>Escherichia coli</i> and evaluated their bacteriolysis (lysis) activity, lytic spectrum, adsorption rate constant, burst size, and titer of a 1-day incubation, followed by clustering of the phages based on these physiological characteristics.</p><p><strong>Results: </strong>The variation in lysis onset time and duration was more significant for cocktails of phages from different clusters than for phage cocktails from the same cluster.</p><p><strong>Conclusions: </strong>This suggests that a combination of phages with different physiological characteristics is necessary to create a cocktail that rapidly and continuously lyses bacteria over a prolonged duration while suppressing the emergence of resistant bacterial strains.</p>\",\"PeriodicalId\":74428,\"journal\":{\"name\":\"PHAGE (New Rochelle, N.Y.)\",\"volume\":\"4 3\",\"pages\":\"128-135\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574527/pdf/phage.2023.0016.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PHAGE (New Rochelle, N.Y.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/phage.2023.0016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PHAGE (New Rochelle, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/phage.2023.0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/20 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Tailoring Effective Phage Cocktails for Long-Term Lysis of Escherichia coli Based on Physiological Properties of Constituent Phages.
Background: Bacteriophage (phage) therapy has regained attention as an alternative to antimicrobial agents for eliminating bacteria; however, the emergence of phage-resistant bacteria during the therapy is a major concern. One method to control this emergence is to create a cocktail composed of multiple phages.
Materials and methods: In this study, we isolated 28 phages infecting Escherichia coli and evaluated their bacteriolysis (lysis) activity, lytic spectrum, adsorption rate constant, burst size, and titer of a 1-day incubation, followed by clustering of the phages based on these physiological characteristics.
Results: The variation in lysis onset time and duration was more significant for cocktails of phages from different clusters than for phage cocktails from the same cluster.
Conclusions: This suggests that a combination of phages with different physiological characteristics is necessary to create a cocktail that rapidly and continuously lyses bacteria over a prolonged duration while suppressing the emergence of resistant bacterial strains.