生物医学文献从人工语义索引到自动语义索引之路:10年历程。

Frontiers in research metrics and analytics Pub Date : 2023-09-29 eCollection Date: 2023-01-01 DOI:10.3389/frma.2023.1250930
Anastasia Krithara, James G Mork, Anastasios Nentidis, Georgios Paliouras
{"title":"生物医学文献从人工语义索引到自动语义索引之路:10年历程。","authors":"Anastasia Krithara, James G Mork, Anastasios Nentidis, Georgios Paliouras","doi":"10.3389/frma.2023.1250930","DOIUrl":null,"url":null,"abstract":"<p><p>Biomedical experts are facing challenges in keeping up with the vast amount of biomedical knowledge published daily. With millions of citations added to databases like MEDLINE/PubMed each year, efficiently accessing relevant information becomes crucial. Traditional term-based searches may lead to irrelevant or missed documents due to homonyms, synonyms, abbreviations, or term mismatch. To address this, semantic search approaches employing predefined concepts with associated synonyms and relations have been used to expand query terms and improve information retrieval. The National Library of Medicine (NLM) plays a significant role in this area, indexing citations in the MEDLINE database with topic descriptors from the Medical Subject Headings (MeSH) thesaurus, enabling advanced semantic search strategies to retrieve relevant citations, despite synonymy, and polysemy of biomedical terms. Over time, advancements in semantic indexing have been made, with Machine Learning facilitating the transition from manual to automatic semantic indexing in the biomedical literature. The paper highlights the journey of this transition, starting with manual semantic indexing and the initial efforts toward automatic indexing. The BioASQ challenge has served as a catalyst in revolutionizing the domain of semantic indexing, further pushing the boundaries of efficient knowledge retrieval in the biomedical field.</p>","PeriodicalId":73104,"journal":{"name":"Frontiers in research metrics and analytics","volume":"8 ","pages":"1250930"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10576528/pdf/","citationCount":"0","resultStr":"{\"title\":\"The road from manual to automatic semantic indexing of biomedical literature: a 10 years journey.\",\"authors\":\"Anastasia Krithara, James G Mork, Anastasios Nentidis, Georgios Paliouras\",\"doi\":\"10.3389/frma.2023.1250930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biomedical experts are facing challenges in keeping up with the vast amount of biomedical knowledge published daily. With millions of citations added to databases like MEDLINE/PubMed each year, efficiently accessing relevant information becomes crucial. Traditional term-based searches may lead to irrelevant or missed documents due to homonyms, synonyms, abbreviations, or term mismatch. To address this, semantic search approaches employing predefined concepts with associated synonyms and relations have been used to expand query terms and improve information retrieval. The National Library of Medicine (NLM) plays a significant role in this area, indexing citations in the MEDLINE database with topic descriptors from the Medical Subject Headings (MeSH) thesaurus, enabling advanced semantic search strategies to retrieve relevant citations, despite synonymy, and polysemy of biomedical terms. Over time, advancements in semantic indexing have been made, with Machine Learning facilitating the transition from manual to automatic semantic indexing in the biomedical literature. The paper highlights the journey of this transition, starting with manual semantic indexing and the initial efforts toward automatic indexing. The BioASQ challenge has served as a catalyst in revolutionizing the domain of semantic indexing, further pushing the boundaries of efficient knowledge retrieval in the biomedical field.</p>\",\"PeriodicalId\":73104,\"journal\":{\"name\":\"Frontiers in research metrics and analytics\",\"volume\":\"8 \",\"pages\":\"1250930\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10576528/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in research metrics and analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frma.2023.1250930\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in research metrics and analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frma.2023.1250930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生物医学专家在跟上每天发表的大量生物医学知识方面面临着挑战。随着MEDLINE/PubMed等数据库每年增加数百万次引用,有效访问相关信息变得至关重要。由于同音异义词、同义词、缩写或术语不匹配,传统的基于术语的搜索可能会导致不相关或遗漏文档。为了解决这一问题,使用具有相关同义词和关系的预定义概念的语义搜索方法已被用于扩展查询术语和改进信息检索。国家医学图书馆(NLM)在这一领域发挥着重要作用,用医学主题词库中的主题描述符为MEDLINE数据库中的引文编制索引,使高级语义搜索策略能够检索相关引文,尽管生物医学术语存在同义词和多义词。随着时间的推移,语义索引已经取得了进步,机器学习促进了生物医学文献中从手动语义索引到自动语义索引的转变。本文重点介绍了这一转变的历程,从手动语义索引和自动索引的最初努力开始。BioASQ挑战已经成为语义索引领域革命的催化剂,进一步推动了生物医学领域高效知识检索的边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The road from manual to automatic semantic indexing of biomedical literature: a 10 years journey.

The road from manual to automatic semantic indexing of biomedical literature: a 10 years journey.

The road from manual to automatic semantic indexing of biomedical literature: a 10 years journey.

The road from manual to automatic semantic indexing of biomedical literature: a 10 years journey.

Biomedical experts are facing challenges in keeping up with the vast amount of biomedical knowledge published daily. With millions of citations added to databases like MEDLINE/PubMed each year, efficiently accessing relevant information becomes crucial. Traditional term-based searches may lead to irrelevant or missed documents due to homonyms, synonyms, abbreviations, or term mismatch. To address this, semantic search approaches employing predefined concepts with associated synonyms and relations have been used to expand query terms and improve information retrieval. The National Library of Medicine (NLM) plays a significant role in this area, indexing citations in the MEDLINE database with topic descriptors from the Medical Subject Headings (MeSH) thesaurus, enabling advanced semantic search strategies to retrieve relevant citations, despite synonymy, and polysemy of biomedical terms. Over time, advancements in semantic indexing have been made, with Machine Learning facilitating the transition from manual to automatic semantic indexing in the biomedical literature. The paper highlights the journey of this transition, starting with manual semantic indexing and the initial efforts toward automatic indexing. The BioASQ challenge has served as a catalyst in revolutionizing the domain of semantic indexing, further pushing the boundaries of efficient knowledge retrieval in the biomedical field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信